alexa Abstract | Statistical texture feature set based classification of histopathological images of stomach adenocarcinoma

Biomedical Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Inspection of the biopsy samples microscopically plays a vital role in the definitive diagnosis of cancer. To overcome the subjectivity in pathologists’ decision, objective analysis of the stomach biopsy samples is carried out in this work. At the tissue level, malignancy leads to distortions in glandular structure and nearby supporting tissue namely, stroma. These pathological alterations are known to cause larger variations in the image’s texture. So the proposed method extracts textural features from the histopathological image and classifies them using the SVM classifier. Gray-Tone spatial Dependence Matrix (GSDM), Gray-Level Run Length Matrix (GLRLM), Wavelet transform were used for the extraction of statistical texture features from Region of Interest (ROI). Embedded model of feature selection was carried out. Minimum Redundancy Maximum Relevance (MRMR) scheme was used for Feature ranking. The composite feature set comprising of both the spatial domain (GSDM, GLRLM) and Wavelet domain features showed better discriminating characteristics for the four different classes, (Normal, Well Differentiated, Moderately Differentiated, Poorly Differentiated) achieving a highest classification accuracy of 93.75%.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Anishiya P Sasikala M


Adenocarcinoma, Biopsy, Texture, Statistical feature set, Support vector machine, #

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version