alexa Abstract | Surveying on energy pattern and application of neural network for predict energy consumption for wheat production in Iran

European Journal of Experimental Biology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


The aim of this study was to examine energy use pattern and predict the output energy for dry wheat production in Gorve country, Kordestan province of Iran. The data used in this study were collected from farmers by using a face to face survey. The results revealed that wheat production consumed a total of 42.998 G J ha–1 and output was 97.935 G J ha–1. Electricity has the highest share by 26.135 G J ha–1 followed by total fertilizers and diesel fuel. In this study, several direct and indirect factors have been identified to create an artificial neural networks (ANN) model to predict output energy for wheat production. The final model can predict output energy based on human labor, machinery, diesel fuel, chemical fertilizer, biocides, electricity and seed. The results of ANNs analyze showed that the (7-6-6-1)-MLP, namely, a network having six neurons in the first and second hidden layer was the bestsuited model estimating the output energy. For this topology, MSE and R2 were 0.003 and 94%, respectively. The sensitivity analysis of input parameters on output showed that total chemical fertilizer and seed had the highest and lowest sensitivity on output energy with 22% and 7%, respectively.

To read the full article Peer-reviewed Article PDF image

Author(s): Mohamad Reza Moghimi Mohsen Pooya Behzad Mohammadi Alasti and Mehdi Abasgholipor Ghadim


Artificial neural networks, Energy consumption, wheat production, Iran

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us