alexa Abstract | Synthesis and characterization of layered silicate/epoxy nanocomposite

Advances in Applied Science Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Layered silicate/polymer nanocomposites are materials that display rather unique properties, even at low silicate content, by comparison with more conventional particulate-filled polymers. These nanocomposites exhibit improved mechanical, thermal, optical, gas permeability resistance and fire retardancy properties when compared with the pure polymer. In this study, layered silicate/polymer nanocomposites were prepared using Na+ cation containing montmorillonite (MMT) and epoxy resins. Silicate particles were treated with hexadecyltrimethylammonium chloride (HTAC) to obtain the complete homogenous dispersion of the nano plaques within the polymer matrix which forms the exfoliated microstructure. In this way, organophilic silicates (OMMT) were obtained. Modification of the silicate expands the silicate galleries (from 14 Å to 18 Å) that promote the formation of exfoliated composite structure. SEM results showed that nanocomposites with organically modified MMT exhibited better dispersion than those with MMT. It was found that the tensile and flexural modulus values are increased, whereas the fracture toughness is decreased with increasing silicate content. Thermal analysis results revealed that the glass transition temperature (Tg) of the neat epoxy resin (63.6oC) increases to 68.9 oC for the nanocomposites with 3 wt. % of OMMT. By incorporation of silicate particles, the dynamic mechanical properties of epoxy; including the storage and loss modulus and Tg are increased. Optical transmission values of the epoxy were affected by MMT and OMMT silicate incorporation. It was found that flame resistance at the polymer improved by the incorporation of MMT particles to the neat epoxy .

To read the full article Peer-reviewed Article PDF image

Author(s): S Satapathy G C Mohanty and P L Nayak


MMT, DSC, Tensile, Layer silicate/Epoxy, XRD , Nanocomposite., Nanocomposite

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version