alexa Abstract | The Role of Purα in Neuronal Development, the Progress in the Current Researches

Journal of Neurology and Neuroscience
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article Open Access


As a ubiquitous protein in the body, Purα has been considered to possess multiple regulatory functions from DNA replication and transcription to RNA transport and translation. The recent studies have proved that Purα protein played a vital role in neuronal development with the solid and abundant evidence both in transgenic mice and human genetic DNA analysis. The Purα knocked out mice models have been successfully established in two independent research groups and their results demonstrated that lack of Purα alters postnatal brain development. Mice lacking of Purα display decreased neurogenesis and impaired neuronal development. In the mouse brain, the expression level of Purα seems to be regulated with brain development. It starts to express Purα after birth and quickly reach to highest level in the third week. The recent studies also have proved that some neurodegenerative disease also linked with Purα, such as fragile X-associated tremor/ataxia syndrome. rCGG-mediated neuronal toxicity could be modulated by heterogeneous nuclear ribonucleoprotein A2/B1 and Purα, which is rCGG-repeat-binding proteins. The 5q31.3 Microdeletion Syndrome is another disorder that is associated with the mutation of Purα gene, it has been demonstrated that all the symptoms such as the neurocognitive impairment, neurodevelopmental delay and learning disability are caused by the mutation of Purα gene. In this mini review, we will retrospectively review the current progress of Purα in neuronal development and try to figure out the connections between these observed phenomena and the biological function of Purα.

To read the full article Peer-reviewed Article PDF image

Author(s): Chengmin Yuan Ping Li Shanshan Guo Bingying Zhang Tao Sun and Jianqi Cui


Purα, Neuronal development, Gene mutation, Knock out, Seizures, Developmental Neuroscience,Affective Neurology

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version