alexa Abstract | Association of Genetic Polymorphisms in Genes Involved at the Branch Point of Nucleotide Biosynthesis and Remethylation with Down Syndrome Birth Risk: A Case-Control Study
ISSN: 1747-0862

Journal of Molecular and Genetic Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

DNA methylation and nucleic acid biosynthesis are two crucial phenomena for normal chromosomes segregation. From our earlier studies, MTHFR 677T individually and in combination with other gene polymorphisms, micronutrient deficiency and hyperhomocysteinemia was shown to be associated with risk in Down syndrome (DS) mothers. Remethylation and nucleic acid biosynthesis pathways are dependent on the activity of Methylenetetrahydrofolate reductase (MTHFR) and Thymidylate synthase (TYMS) respectively, competing for common substrate molecule 5,10-methelenetetrahydrofolate (5,10-MTHF). Role of MTHFD1 1958 G>A (affecting synthesis of 5,10-MTHF), MTHFR 677 C>T (affecting methylation), TYMS 5'UTR 28 bp repeat polymorphism and TYMS 3'UTR 6bp deletion polymorphism (affecting nucleic acid biosynthesis) in a cohort of 200 case mothers and 187 control mothers (also 146 case triads: mother, father, and child) were studied. We observed a significant association of MTHFR 677 C>T in a co-dominant model (p=0.0428) and dominant model (0.0194) as well as TYMS 5'UTR 28 bp repeat polymorphism in a recessive model (p=0.0005) and dominant model (0.0161). Genetic combination analysis revealed a significant additive effect of certain genotypic combinations (especially combination of MTHFR 677T and TYMS 2R alleles with other alleles or genotypes) in increasing risk. Weak linkage disequilibrium (LD) was observed between TYMS 5' and 3' UTR regions polymorphism in LD analysis. Transmission disequilibrium test (TDT) analysis revealed a consistent trend of preferential allele's transmission from parents. We concluded that genetic interaction of remethylation pathway and the nucleic acid metabolic pathway was significantly associated with risk factors for DS childbirth. However, replication studies are required to validate our observation in the population.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Sushil Kumar Jaiswal, Krishna Kishore Sukla, Shravan Kumar Mishra, Anjali Rani Lakhotia, Ashok Kumar and Amit Kumar Rai

Keywords

Down syndrome, MTHFD1, MTHFR, TYMS, Folate, Homocysteine, Genetic Engineering in Medicine, Genomic Medicine, Human Molecular Genetics, Medicinal Biotechnology, Metabolomics, Molecular Basis of Cancer, Molecular Basis of Obesity, Molecular Diagnosis, Molecular Genetic Test, Molecular Medicine, Nuclear Medicine, Pathology and Molecular Medicine, Personalized Medicine

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords