alexa Abstract | Characterization of Biofield Energy Treated 3-Chloronitrobenzene: Physical, Thermal, and Spectroscopic Studies
E-ISSN: 2252-5211

International Journal of Waste Resources
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


The chloronitrobenzenes are widely used as the intermediates in the production of pharmaceuticals, pesticides and rubber processing chemicals. However, due to their wide applications, they are frequently released into the environment thereby creating hazards. The objective of the study was to use an alternative strategy i.e. biofield energy treatment and analysed its impact on the physical, thermal and spectral properties of 3-chloronitrobenzene (3-CNB). For the study, the 3-CNB sample was taken and divided into two groups, named as control and treated. The analytical techniques used were X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopy. The treated group was subjected to the biofield energy treatment and analysed using these techniques against the control sample. The XRD data showed an alteration in relative intensity of the peak along with 30% decrease in the crystallite size of the treated sample as compared to the control. The TGA studies revealed the decrease in onset temperature of degradation from 140ºC (control) to 120°C, while maximum thermal degradation temperature was changed from 157.61ºC (control) to 150.37ºC in the treated sample as compared to the control. Moreover, the DSC studies revealed the decrease in the melting temperature from 51°C (control) →47°C in the treated sample. Besides, the UV-Vis and FT-IR spectra of the treated sample did not show any significant alteration in terms of wavelength and frequencies of the peaks, respectively from the control sample. The overall study results showed the impact of biofield energy treatment on the physical and thermal properties of 3-CNB that can further affect its use as a chemical intermediate and its fate in the environment.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh and Snehasis Jana


Biofield energy treatment, 3-Chloronitrobenzene, X-ray diffraction study, Thermogravimetric analysis, Differential scanning calorimetry, UV-Visible spectroscopy, Fourier transform infrared spectroscopy, Biomass

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version