alexa CLOCKING STRATEGIES IN HIGH SPEED I/O USING PLL | Abstract
ISSN: 1948-1432

Journal of Global Research in Computer Sciences
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

The normal clocking strategies are not applicable at very high frequencies due to the signal integrity problems. The speed of any high speed circuit is ultimately determined by the I/O circuits associated with it. This paper describes a comparison between different clocking strategies and gives a range of application of these. During 1970-1990, gates switched so slowly that - digital signals actually looked like ones and zeros. Analog modeling of signal propagation was not necessary. At today’s speeds the simple, passive elements of a system viz, Wires, PC boards traces, Connectors, and Chip Packages - make up a significant part of the overall signal delay. Further these elements cause glitches, resets, logic errors, and other problems. As the designs are pushed towards higher operating speeds. For high-performance boards, MCMs and systems, interconnect design must be specified and driven from electrical requirements to: (1)Meet setup and hold times & guarantee signal integrity (2)Avoid design / layout / verification iterations (3)Ensure low manufacturing costs and high reliability The conventional signaling technique, called Common Clock (CC) signaling [support by reference], relies on a single system clock distributed to all bus agents as a common reference. All transactions are performed latch-to-latch using this common clock reference. Trace propagation delays are governed by trace length. Trace lengths are often governed by the thermal solution. As speeds increase, heat sinks get larger and force components farther away from each other, which limit the speed of a common-clock bus design. Source-Synchronous clocking refers to the technique of sourcing a clock along with the data. Specifically, the timing of unidirectional data signals is referenced to a clock (often called the strobe) sourced by the same device that generates those signals, and not to a global clock (i.e. generated by a bus master). A reason that source-synchronous clocking is useful is that it has been observed that all of the circuits within a given semiconductor device experience roughly the same process-voltage-temperature (PVT) variation. This means signal propagation delay experienced by the data through a device tracks the delay experienced by the clock through that same device over PVT A more radical approach for reducing the clocking overhead is to eliminate the clock entirely. Such designs are called self-timed designs. Self-timed systems provide completion information along with their data values. This completion information controls the sequencing of data through the machine and can be encoded in the data (true self-timing) or can be generated by using delay-matching circuits.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Namita Jain

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords