alexa Abstract | Comparison Biomethane Potential (BMP) Test of Sewage Sludge Recovered from Different Treatment Processes
E-ISSN: 2252-5211

International Journal of Waste Resources
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Anaerobic digestion of sewage concentrates represents a very suitable means of generating bioenergy while reducing a huge amount of waste to disposal. Effective biogas production from sewage sludge can be achieved by optimizing operational conditions. In this study, the research was designed to compare the biogas production efficiency from sewage sludge recovered from coagulation and absorption process with sludge recovered from bioflocculation, centrifuged and chemical coagulation (Al2(SO4)3+CMC) processes through biomethane potential experiment (BMP). From the results obtained, the maximum methane production rate of 56.85 mLCH4/gCOD was achieved from concentrates collected during coagulation and absorption treatment process without solid retention time (SRT), concentrates collected during 0.5 d SRT had maximum methane production rate of 110.88 mLCH4/gCOD, methane production rate of 154.28 mLCH4/gCOD was achieved from 2 d SRT concentrate. The Al2(SO4)3+CMC treated concentrate had methane yield of 143 mLCH4/gCOD while bioflocculation concentrate had methane yield of 139 mL/gCOD and centrifuged concentrate had the yield of 124 mL/gCOD within the period of 22 to 29 days. The overall result showed that concentrates recovered from coagulation, adsorption and Al2(SO4)3+CMC processes produced the highest methane with better efficiency and recorded the most stable performance throughout the period of the experiment and this encouraged the future use in anaerobic digestion for large scale methane production.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Odey Emmanuel Alepu, Kaijun Wang, Zhengyu Jin, Giwa Abdulmoseen Segun, Zifu Li and Harrison Odion Ikhumhen


Biomethane potential, Sewage concentrate, Methane, Coagulation and adsorption, Bioflocculation, Centrifuged concentrate, Chemical coagulation, Waste management, Zero waste, E-waste, Fly ash

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version