alexa Abstract | Comparison of UV Concentration Geometries as an Element Capable for the Increment of the Photocatalytic Efficiency of Advanced Oxidation Processes, Inside the Annular Batch Systems
E-ISSN: 2252-5211

International Journal of Waste Resources
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


The present research examines the efficiency achieved by the implementation of two collectors of ultraviolet radiation in an annular batch type photochemical reactor. The first geometry corresponds to a concentric cylinder with the source of radiation, which consists in a media mercury lamp with 1000 watts of power. The second dispositive is constitute by the implementation of two compound parabolic collectors, opposed in their aperture areas, with a concentration factor equal to one and an acceptance angle of 90° . The obtained results shows the capacity of both geometries to increase the efficiency of the system during the Blue Erionyl A-R acid dye degradation, dissolved in aqueous media, by the application of Advanced Oxidation Processes, in an homogeneous phase of ultraviolet radiation and H2 O2 catalyst application. By the use of 0.05 mL per liter of hydrogen peroxide at 50% as a ●OH radicals source, and a colorant concentration of 50 ppm, the collectors allows the 98.4 and 100% of the dye photochemical degradation into a experimental time of 5 minutes, So the experiments registering a system efficiency increasing around of 3.4 and 5.5% respectively. Unlike the original system, and of the cylindrical collector application, the opposite compound parabolic concentrators showed a better capacity to degrade the intermediate products, that are been produced during the mineralization process of the textile compound and absorbs light radiation at wavelengths included between 230 and 480 nm. This promotes a water treatment process time decrement and an electrical energy savings.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Tonahtiuh Rendon, Fernando Hernandez and Juan Castillo


Advanced oxidation processes, Compound parabolic concentrators, Photochemical batch system, Biomass and Biological Waste Treatment, Chemical Waste Management, E-waste, Fly Ash, Nuclear waste

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version