alexa Abstract | Evaluating Surface Variables Simulated by the North American Regional Climate Change Assessment Program over the Great Lakes Region
ISSN : 2332-2594

Journal of Climatology & Weather Forecasting
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

The Great Lakes Region as important resources for water usages plays an important role in the U.S. economy. As the area might be susceptible to global warming, well-informed decisions in response to the possible global warming effects depend on accurate regional assessments by climate models such as Regional Climate Models (RCMs). Four historical RCM runs from the North American Regional Climate Change Assessment Program (NARCCAP) were chosen to study the reliability of simulated land surface variables such as latent heat, sensible heat, surface air temperature, soil moisture, and runoff. The Global Land Data Assimilation System (GLDAS) was used as a truth dataset to evaluate the biases of the RCM results. The comparisons of the monthly climatology of the energy components and water budget components simulated by the RCMs and GLDAS showed that, latent heat and skin air temperature by RCMs were close to the truth data, large biases were identified for sensible heat and runoff values. Specifically, the Weather Research and Forecasting Model (WRFG) model, which used the same Noah land scheme as in GLDAS, showed positive biases of down-welling radiation, sensible heat, and surface air temperature. The Canadian Regional Climate Model version 4 (CRCM) model was found to have lower soil water content, larger snow amount, and more snow melt than the truth data. The results from this study provide a certain degree of confidence for other studies concerning the Great Lakes region to interpret the future predictions of latent heat and air temperatures by the NARCCAP project. Meanwhile, caution should be taken to review and utilize the simulated results related to soil moisture or runoff. This study also provides insights and direction for RCM model developers to further refine related modeling parameterizations.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Lingli He

Keywords

Climate change, Great Lakes, RCM, GCM, North American regional climate change assessment program (NARCCAP), Global land data assimilation system (GLDAS), Climate Change, ELNINO Effect

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords