alexa Abstract | Geostatistical and Spatial Statistical Modelling of Precipitation Varia-tions in Iran
ISSN: 2165-784X

Journal of Civil & Environmental Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Case Report Open Access

Abstract

This study examines the geostatistics and spatial relationships between annual, seasonal and monthly rainfall in Iran for the period 1975-2014. Precipitation variation models were com-pared in Iran deriving from six geostatis-tical, four regression and five spatial models, using monthly data. A geostatistical and spatial statistical analysis consisting of two measurement sub-models was created based on monthly accumulated precipitation; the data was the monthly and seasonal amounts for the period 1975 - 2014, and were estimated from 140 stations. The results of the new geostatistical-spatial statistical analysis model showed that average monthly precipitation se-ries in Iran were revealed to follow Gaussian distribution given their histogram plots and closeness of their mean and median values. On average, monthly precipitation ranged from 3.22 mm in April to 47.157 mm in December in Iran. The suitable interpolation of monthly precipitation indicates that the accuracy of spring precipitation interpolation (RMSE=0.558) can be applied by IDW (Cross-validation). The kriging interpolation of monthly precipitation indicates that the accuracy of autumn precipitation interpolation (RMSE=0.0822) can be applied by probability kriging of autumn precipitation. The empirical Bayesian kriging interpolation of monthly precipitation indicates that the accuracy of autumn precipitation interpolation (RMSE=0.357) can be applied by empirical Bayesian kriging of autumn precipitation. The temporal-spatial distribution of the precipitation station locations has been studied using the ANN tool of the spatial statistics toolbox of ArcGIS 10.3. Based on the calculated Moran’s Index, approximately all months’ precipitation (with the exception of February) has the monthly spatial distribution of the clustered type. The High/Low Clustering of stations’ monthly precipitation has been studied using the HLC tool. Based on the calculated g-index, approximately all months’ precipitation (except for February and March) has the monthly spatial distribution of the high-clusters type.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Majid Javari

Keywords

Geostatistical modeling, Geostatistical-spatial model, Geostatistical-spatial variations, Precipitation variations, Precipitation, Soil Contamination, Building Material, Soil Moisture, Environmental Engineering, Environmental Impact, Environmental Issues, Water Resource, Material Engineering, Pollution Control, Water Quality, Transport Engineering, Wastewater Treatment Plant, Environmental sustainability, Computation Fluid Dynamics, Geotechnical Engineering, Evapotranspiration, Foundation

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords