GET THE APP

..

Journal of Civil and Environmental Engineering

ISSN: 2165-784X

Open Access

Geostatistical and Spatial Statistical Modelling of Precipitation Varia-tions in Iran

Abstract

Majid Javari

This study examines the geostatistics and spatial relationships between annual, seasonal and monthly rainfall in Iran for the period 1975-2014. Precipitation variation models were com-pared in Iran deriving from six geostatis-tical, four regression and five spatial models, using monthly data. A geostatistical and spatial statistical analysis consisting of two measurement sub-models was created based on monthly accumulated precipitation; the data was the monthly and seasonal amounts for the period 1975 - 2014, and were estimated from 140 stations. The results of the new geostatistical-spatial statistical analysis model showed that average monthly precipitation se-ries in Iran were revealed to follow Gaussian distribution given their histogram plots and closeness of their mean and median values. On average, monthly precipitation ranged from 3.22 mm in April to 47.157 mm in December in Iran. The suitable interpolation of monthly precipitation indicates that the accuracy of spring precipitation interpolation (RMSE=0.558) can be applied by IDW (Cross-validation). The kriging interpolation of monthly precipitation indicates that the accuracy of autumn precipitation interpolation (RMSE=0.0822) can be applied by probability kriging of autumn precipitation. The empirical Bayesian kriging interpolation of monthly precipitation indicates that the accuracy of autumn precipitation interpolation (RMSE=0.357) can be applied by empirical Bayesian kriging of autumn precipitation. The temporal-spatial distribution of the precipitation station locations has been studied using the ANN tool of the spatial statistics toolbox of ArcGIS 10.3. Based on the calculated Moran’s Index, approximately all months’ precipitation (with the exception of February) has the monthly spatial distribution of the clustered type. The High/Low Clustering of stations’ monthly precipitation has been studied using the HLC tool. Based on the calculated g-index, approximately all months’ precipitation (except for February and March) has the monthly spatial distribution of the high-clusters type.

PDF

Share this article

Google Scholar citation report
Citations: 1798

Journal of Civil and Environmental Engineering received 1798 citations as per Google Scholar report

Journal of Civil and Environmental Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward