alexa Abstract | Green Engines: Possible Damages by Firing Alternative Fuels and Protection
ISSN: 2168-9792

Journal of Aeronautics & Aerospace Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article Open Access


With the rising cost of fossil fuels along with greenhouse gas emission such as NOx and COx, use of alternative fuels such as syngas and biofuels is intense interesting, and in the meantime using ceramic matrix composites that eliminate the need of film cooling in combustors, vanes and other hot section components to improve the efficiency of gas turbine engine and reduce the NOx and COx emission becomes increasingly attractive for green engines. However, the alternative fuels have an increased hydrogen/carbon ratio; in turn during combustion it produces more water vapor than the conventional jet fuels. The increased water vapor level will have an impact on the protective oxide scale developed on the gas turbine hot section components, particularly on those made of SiC/SiC ceramic matrix composites (CMC), leading to an accelerated degradation of the turbine components. In addition, some alternative fuels derived from biomass may contain alkali elements such as potassium, sodium and calcium, as well as chlorine, sulfur and/or phosphorus, which may result in possible corrosion of the hot section components in gas turbines, leading to premature failure during service. This paper will review some of the alternative fuels and their combustion products, the possible damages to gas turbine hot section components, as well as some potential protective coatings that may mitigate such damage

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Hong Z, Cao G and Chen WR


Gas turbine, Alternative fuel, Ceramic matrix composite, Environmental barrier coating, Aerodynamics, Aeroelasticity, Aerospace Dynamics, Aerospace Engineering techniques, Air Safety, Aircraft,Aircraft Flight Mechanics, Astrodynamics, Aviation, Avionics, Flight Dynamics ,Rocketry, Space, Unmanned-Vehicles

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version