alexa Abstract | Insights into Gene Expression of Activated Pathogenic Autoimmune T Cells - Studies in Experimental Multiple Sclerosis-like Model
ISSN: 1745-7580

Immunome Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Multiple Sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune diseases driven by pathogenic memory T cells. Using myelin oligodendrocyte glycoprotein (MOG) 35-55-specific encephalitogenic T cells (TMOG) isolated from MOG35-55-immunized EAE mice we describe here their gene expression profile following antigen specific activation. A vast number of pro-inflammatory genes including cytokines, chemokines and growth factors (e.g., Csf2, Il3, Ccl1, Ccl3) as well as signaling pathways (e.g., iNOS, MAPK, JAK/STAT, NFκβ) were dramatically upregulated following MOG35-55 stimulation of TMOG cells. A number of Th17-related pathways were induced confirming potent Th17-like activation of TMOG. Interestingly, genes known for their anti-inflammatory role (Sit1, Hsd11b1, Pias3, Pparg, Lgmn, Klk3, Tnfaip8l2) were down-regulated in response to MOG35-55 suggesting that silencing of intrinsic suppressory mechanisms may underlie the hyperactivation of memory T cells. MOG35-55 activation led to lower transcription of pro-apoptotic/autophagic genes (Ddit4, Bbc3, Dapk2, Wbp1) and to enhanced level of anti-apoptotic transcripts (Bcl2l1). Transcripts related to toll-like receptors and MyD88-signaling were induced, revealing the involvement of innate immunity pathways in T cell driven autoimmunity. This study reveals the transcriptional events that lead to enhanced cytotoxicity, proliferation and resistance to apoptosis of activated autoimmune T cells. We suggest that encephalitogenic T cells may serve as a reliable in vitro model for screening for possible therapeutics against T cell driven autoimmune diseases.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Ewa Kozela, Ana Juknat, Fuying Gao, Giovanni Coppola, Nathali Kaushansky and Zvi Vogel

Keywords

Encephalitogenic T cells, Th17, MOG, Multiple sclerosis, Autoimmune diseases, Gene expression, Encephalitogenic T cells, Th17, MOG, Multiple sclerosis, Autoimmune diseases, Gene expression

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords