alexa Abstract | Leonotis nepetifolia Protects against Acetaminophen-Induced Hepatotoxicity: Histological Studies and the Role of Antioxidant Enzymes
ISSN: 2329-6836

Natural Products Chemistry & Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Aim of the study: High dose acetaminophen (APAP) increases the risk of liver injury caused by oxidative stress due to accumulation of reactive species. Although N-acetyl cysteine is the standard antidote used to treat acute APAPinduced liver failure, we proposed that known antioxidant phytochemicals in Leonotis nepetifolia extracts would protect against APAP-induced hepatic injury by modulating the activities of antioxidant enzymes. Materials and methods: Methanol and aqueous extracts of L. nepetifolia were orally administered in doses ranging (250 mg/kg to 1000 mg/kg) as pre- and post-treatment with high dose APAP (550 mg/kg) to Swiss albino mice. Twenty-four hours after the final dose, animals were euthanized and blood and liver collected for liver enzymes (ALT and AST), histological assessment and antioxidant enzyme assays. Results: Methanol and aqueous extracts as pre-treatment and post-treatment protected against hepatic injury. Extracts abrogated the 14-fold and 4-fold APAP-induced increases in ALT and AST respectively, including histopathological damage (p<0.05). Extracts reversed APAP-induced 4-fold and 14-fold increases in GR and SOD activities respectively (p<0.05). Additionally, extracts reversed APAP-induced decline in GPx activity; particularly the aqueous extract as pre-treatment increased GPx activity up to 2.2-fold over saline-treated controls (p<0.05). Conclusions: Extracts, as pre-treatment and post-treatment, prevented APAP-induced hepatic injury by modulating the activities of antioxidant enzymes. Of particular interest, is the reversal of APAP-induced decrease in GPx activity and increase in SOD activity? Extract-induced increase in GPx activity would facilitate the scavenging of hydroperoxide and peroxide reactive species generated by high dose APAP. We propose that antioxidant phytochemicals in L. nepetifolia may be acting as free radical scavengers which results in reduced SOD activity.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Williams AF, Clement YN, Nayak SB and Rao AVC


L. nepetifolia, Reductase, Catalase, Bioactive Compounds, Phospholipids, Alkaloids

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version