alexa Abstract | Mammosite Brachytherapy Dosimetry-Effect of Contrast and Air Interface on Skin Dose
ISSN: 2332-0796

Journal of Electrical & Electronic Systems
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


High-dose-rate (HDR) brachytherapy is an effective internal radiation therapy procedure for treating malignant neoplasms. This technique is widely used in breast cancer treatments to destroy residual cancer cells surrounding the lumpectomy cavity following surgery. This is done by inserting a balloon catheter into the cavity that is inflated with saline as well as a medium of radiographic contrast. Then the radioactive isotope is positioned into the center of the balloon using an HDR unit to deliver the prescribed dose to a volume surrounding the balloon. Most of the currently available treatment planning systems (TPS) for brachytherapy, including Nucletron Oncentra, estimate dose using proprietary algorithms which use a pre-calculated dose metric derived from Ir-192 placed in a water phantom. However, they do not take into account variations in attenuation due to inhomogeneities in different tissues. This may lead to several questions: do these TPS estimate absorbed dose correctly within the target tissue? What are the effects on breast-air interface within the target volume? Does a radiographic contrast medium in the balloon alter the dose distribution calculated by TPS? These uncertainties and doses can be quantified by using the data recorded in a tissueequivalent patient phantom which is aided by a PN junction commercial diode detector and an electrometer. During this investigation, we used a cubical water phantom and Mammosite® single lumen balloon system to measure effects on breast-air interface, the diode detector was placed on the phantom wall to simulate the tissue air interface. Measured data were compared with predictions from the Oncentra TPS for the same geometry. These results may help quantify uncertainties in the predicted versus actual skin doses used during the treatments. This in turn could increase the clinicians’ predictive power regarding potential excessive skin dose that could cause toxicity in patients.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Foster A, Ranatunga IP and Wijesinghe RS


Brachytherapy, Radiation therapy, Brachytherapy dosimetry, Radial dose function, Breast cancer, Brachytherapy, Radiation therapy, Brachytherapy dosimetry, Radial dose function, Breast cancer

Related Subjects

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version