alexa Abstract | MATLAB Based Back-Propagation Neural Network for Automatic Speech Recognition
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Speech interface to computer is the next big step that the technology needs to take for general users. Automatic speech recognition (ASR) will play an important role in taking technology to the people. There are numerous applications of speech recognition such as direct voice input in aircraft, data entry, speech-to-text processing, voice user interfaces such as voice dialling. ASR system can be divided into two different parts, namely feature extraction and feature recognition. In this paper we present MATLAB based feature recognition using backpropagation neural network for ASR. The objective of this research is to explore how neural networks can be employed to recognize isolated-word speech as an alternative to the traditional methodologies. The general techniques developed here can be further extended to other applications such as sonar target recognition, missile tracking and classification of underwater acoustic signals. Back-propagation neural network algorithm uses input training samples and their respective desired output values to learn to recognize specific patterns, by modifying the activation values of its nodes and weights of the links connecting its nodes. Such a trained network is later used for feature recognition in ASR systems.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Siddhant C. Joshi, Dr. A.N.Cheeran

Keywords

Automatic Speech Recognition, Artificial Neural Networks, Pattern Recognition, Back-propagation Algorithm, Speech pathology,Speech Therapy,Speech Therapy for Children,Speech Therapy for Adults,Speech Therapy Materials,Speech Therapy Exercise,Autism Speech Therapy,Speech and Language pathology,Communicate Speech pathology,Bilingual Speech pathology,Medical Speech pathology,Speech Impediment / speech disorder,Interventional Speech Therapy,Speech and Language Disorders

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords