alexa Abstract | Modeling Open Channel Fluid Flow with Trapezoidal Cross Section and a Segment Base
ISSN: 2168-9679

Journal of Applied & Computational Mathematics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

This study investigates the suitability of trapezoidal cross-section with segment base in drainage system design. The study has considered steady uniform open channel flow. The saint-Venant partial differential equations of continuity and momentum governing free surface flow in open channels have been solved using finite difference approximation method. We investigate the effects of the channel radius, area of the cross section, the flow depth and the manning coefficient on the flow velocity. The flow variables are velocity and the flow depth while the flow parameters are cross section area of flow, channel radius, slope of the channel and manning coefficient. The study has established that increase in cross section area of flow leads to a decrease in flow velocity. Further, increase in channel radius and cross section area of flow leads to a decrease in flow velocity and increase in roughness coefficient cause flow velocity to decrease. Additionally, increase in flow depth increases velocity. The physical conditions of the flow channel have been applied to conservation equations to arrive at specific governing equations. The results of the study have been presented graphically.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Marangu PK, Mwenda E and Theuri DM

Keywords

Velocity, Slope, Channel radius, Drainage systems, Smooth Complexities, Adomian Decomposition Method, Applied Mathematics, Number Theory, Sensitivity Analysis, Convection Diffusion Equations, Numerical Solutions, Nonlinear Differential Equations, Differential Transform Method , Balance Law, Quasilinear Hyperbolic Systems, Mixed Initial-boundary Value, Fuzzy Boundary Value, Semi Analytical-Solution, Integrated Analysis, Fuzzy Environments, Molecular Modelling, Fuzzy Quasi-Metric Space, Three Dimensional Steady State, Computational Model

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords