alexa Abstract | Molecular Modeling and Docking Study of 2-Nitropropane Dioxygenase of Mycobacterium tuberculosis
ISSN: 2090-4924

International Journal of Biomedical Data Mining
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Mycobacterium tuberculosis is infectious bacteria and causes tuberculosis in humans. M. tuberculosis infects the immune deficient human and shows the symptoms of the infection. Also bacteria stay in latent phase inside the human body and can be active in suitable conditions. One third of the total population of the world is infected by M. tuberculosis; therefore it is very important to have potential drugs against tuberculosis. Mycobacteria have reported multidrug resistance to the available drugs for tuberculosis. Hence, there is a need to find a new target for the drugs. Fatty acid synthase II (FAS II) is the enzyme that catalyzes the synthesis of fatty acid and is not found in humans. It is a multifunctional polypeptide, composed of different domains in which can be targeted individually to inhibit the function of FAS II. 2-Nitropropane Dioxygenase is a part of enoyl reductase domain in FAS II and can be potentially targeted. In this study, the homology modeling of 2NPD from M. tuberculosis has been done and small molecules that have the potential to bind and inhibit the function of the enzyme have been identified. Also the stability of proteinligand complex was determined.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Abid AM1*, Ibrahim BS1, Yadav PK1, Arya H1 and Rasool A2

Keywords

Mycobacterium tuberculosis, Fatty acid synthase II, 2-Nitropropane dioxygenase, Drug design, Homology modeling, Molecular docking, QSAR, MD simulation

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords