alexa Abstract | Multifunctional Neurodevice for Recognition of Electrophysiological Signals and Data Transmission in an Exoskeleton Construction
ISSN: 0974-8369

Biology and Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

The most important task of health care is the increasing of life expectancy and improving the quality of life of the population. Taking into consideration the high numbers of disability, it is very relevant to establish a high-precision neurodevice, allowing the integration of people with limited functional abilities into the society. This paper presents the provisional results of a research work, the main aim of which was to develop the multifunctional neurodevice with the ability to transfer data to an exoskeleton construction. In the first phase, we selected the optimal way for a neurodevice layout that would be capable to measure the electromyography (EMG), electroencephalography (EEG), electroocu- lography (EOG), photoplethysmography, body temperature for a long period of time, and also motor activity with the ability to send data to a remote practitioner in real time. The software was developed. Experiments were conducted; at the same time the final (residual) graphical results were compared with the commercially available devices. The experimental results showed a high accuracy of the signals of EEG, EMG, EOG, photoplethysmography, thermometry, and physical activity. In conclusion, with the participation of 10 healthy volunteers, the study of hybridization of EEG and EMG signals was carried out, and it showed a significant advantage in comparison with only one modal system. It is expected that a further work will allow us to formulate optimal technical solutions based on the present knowledge of human physiology. This would be the basis for creating a highly accurate and safe multifunction neurodevice and would be able to meet the medico-social needs and would help to reintegrate people with disabilities into society by connecting them to the robotic technique, to the exoskeletons.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Natalia Nikolaevna Shusharina, Evgeny Anatolyevich Bogdanov, Vitaliy Andreevich Petrov, Ekaterina Vladimirovna Silina and Maksim Vladimirovich Patrushev

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords