alexa Abstract | NACA653218 Airfoil Aerodynamic Properties
ISSN: 2168-9792

Journal of Aeronautics & Aerospace Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

In this research we have obtained the drag and lift coefficients, velocity, pressure and path lines contours using CFD which can also be determined by using wind tunnel experimental test. This process is relatively difficult and surely price more than CFD technique cost for the same problem solution. Thus we have gone through analytical method then it can be validated by experimental testing. A CFD procedure is described for determination aerodynamic characteristics of subsonic NACA653218 airfoil. Firstly, the airfoil model shape, boundary conditions and meshes were all formed in GAMBIT® 2.3.16 as a pre-processor. The second step in a CFD model should be to examine the effect of the mesh size on the solution results. In order to save time take case for a grid with around 100000 cells. The third step is validation of the CFD NACA653218 airfoil shape model by different turbulence models with available experimental data for the same model and operation conditions. The temperature of free stream is 288.2 K, which is the same as the environmental temperature. At the given temperature, the density of the air is ρ=1.225kg/m3, the pressure is 101325 Pa and the viscosity is μ=1.7894×10-5 kg/m s. A segregate, implicit solver is utilized (FLUENT® processor) estimate were prepared for angles of attack variety from -5 to 16°. The Spalart-Allmaras turbulence model is more accurate than standard k – ε model, RNG k – ε model and standard model k–ε models. For lift coefficient, it is found maximum error by Spalart-Allmaras model about 12% lower than other turbulence models. For drag coefficient, it is found maximum error by Spalart-Allmaras model about 25% lower than other turbulence models. For pitching moment coefficient, it is found maximum error by Spalart-Allmaras model about 30% lower than other turbulence models.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Abdelghany ES, Abdellatif OE, Elhariry G and Khalil EE

Keywords

Aerodynamics, Aeroelasticity, Aerospace Dynamics, Aerospace Engineering techniques, Air Safety, Aircraft,Aircraft Flight Mechanics, Astrodynamics, Aviation, Avionics, Flight Dynamics ,Rocketry, Space, Unmanned-Vehicles, Aerodynamics, Aeroelasticity, Aerospace Dynamics, Aerospace Engineering techniques, Air Safety, Aircraft,Aircraft Flight Mechanics, Astrodynamics, Aviation, Avionics, Flight Dynamics ,Rocketry, Space, Unmanned-Vehicles

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords