alexa Abstract | Neural Tissues Filter Electromagnetic Fields: Investigating Regional Processing of Induced Current in Ex vivo Brain Specimens
ISSN: 0974-8369

Biology and Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

As has been demonstrated experimentally, the living brain responds to pulsatile electromagnetic fields. Our aim was to investigate the capacities of ex vivo neural tissue to process and filter induced current generated by naturally occurring and laboratory-controlled electromagnetic fields. Microvolt potentials within the chemically fixed postmortem brains were collected throughout the field exposures. During strong geomagnetic storms there was a significant increase in power spectra within the 7.5 Hz to 14 Hz range within the right but not the left parahippocampal gyrus compared to days with relatively quiet geomagnetic activity. This finding indicated that ambient electromagnetic fluctuations from natural sources were processed differentially as a function of subsections of the postmortem tissue. Exposing a whole, fixed human brain to two physiologically patterned magnetic fields that have been associated with powerful subjective experiences reported by hundreds of human volunteers in the laboratory setting elicited increased power within the 7.5 Hz to 20 Hz range. The effects required 10 to 20 s to emerge and were primarily represented within tissue subsections of the right amygdala and orbitofrontal gyri. Other fields such as simple sine-wave (20 Hz) patterns of comparable intensity (2 to 10 μT) did not elicit the same configuration of changes. The results indicate that neural tissues filter electromagnetic fields non-randomly.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Nicolas Rouleau and Michael A Persinger

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords