alexa Abstract | Performance Simulation of Two-Bed Adsorption Refrigeration Chiller with Mass Recovery
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

The technology of adsorption chiller is an efficient way of heat conversion. It can significantly reduce environmental pollution and improve energy efficiency. This paper deals with numerical study of refrigeration systems with silica gel/water pairs with mass recovery. The model is validated with experimental results from the ENERBAT platform. Numerical results are in good agreement with those of experiment. A process of mass recovery is added to study its the effect on the performances of the system. The effect of hot water temperature, cooling water temperature, chilled water temperature and cycle time, on the coefficient of performance (COP), the specific cooling capacity (SCP), the cycled mass, the evaporator outlet temperature and efficiency system are investigated in order to extrapolate the results in the Tunisian climate and to determine their optimum values able to maximize the performance of the system under analysis. The simulation calculation indicates a COP value of 0.7 with a driving source temperature of 85°C in combination with coolant inlet and chilled water inlet temperature of 40°C and 15°C, respectively. The most optimum adsorptiondesorption cycle time is approximately 1240s based on the performance from COP and SCP, achieving a SCP of 400 W/kg.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Najeh Ghilen, Slimane Gabsi, Riad Benelmir and Mohammed El Ganaoui

Keywords

Solar adsorption refrigeration, Silica gel, Simulation, Performance, Mass recovery, Renewable Energy

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords