alexa Abstract | Predictive Modeling of Biogas Production from Anaerobic Digestion of Mixed Kitchen Waste at Mesophilic Temperature
E-ISSN: 2252-5211

International Journal of Waste Resources
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Growth of population is directly influencing the municipal solid waste generation rate. Although, kitchen waste is disposed of mostly in developing countries and its potential of biogas production is not explored well. Anaerobic digestion provides opportunity of twofold benefits i.e. pollution abutment for environmental protection and biogas generation for sharing energy load. Present study was intended to understand the biogas production process at mesophilic temperature (37°C). The organic waste from kitchen was used to make up substrate, which was anaerobically digested in an experimental continues stirred tank reactor (CSTR). Inhibition phase was detected when the graph was plotted for first 60 days and about 28th day it was inhabited. Biogas production from recovered condition was subjected to statistical analysis. Simple regression yielded a good predictive model that gave a correlation of 0.995 despite of including the inhibition phase in complete analysis. An acceptable agreement between observed and modeled biogas production (BGP) rates has vetted sanctity of regression based predictive model. Such models can also be used to keep check on digestion process for optimization of biogas yield and deciding the substrate feeding rate and concentration on time scale.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Aasim Ali, Li Rundong, Feroz Shah, RB Mahar, Muhammad WajidIjaz, Sallahuddin and Muhammad Muqueet

Keywords

Anaerobic digestion, Mixed kitchen waste, Biogas, CSTR, Statistical analysis, Biogas production, Waste management, Zero waste, E-waste, Fly ash

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords