alexa Abstract | Room Temperature Gas Sensing with Ultrathin Au Nanowires
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article Open Access


One-dimensional nanostructures are of particular interest in nanoelectronics because of the ease with which they can be utilized in fabricating nanodevices where their long axis facilitates contact to the structure, while the short axis preserves the quantized nature of electronic levels. It is therefore desirable to synthesize precisely controlled semiconductor and metal nanowires to study their properties. With much advancement achieved in producing high quality and appreciably controlled semiconductor nanowires, approaches to precisely control the dimensions of metal nanowires still needs to be explored. Here, we have investigated room-temperature sensing properties of these gold nanowires for hydrogen, ethanol and NH3. The sensitivity and selectivity of the wires for sensing different gases are explored. The sensing devices were fabricated by drop-casting the nanowire dispersion over pre-patterned electrodes ultimately paving the path for cost effective applications of these nanowires. Simple chemical routes and solution processing techniques has been utilized for their subsequent device applications. The driving force behind the solution processed devices is their low cost, large device area, physical flexibility and compatibility with the existing technologies.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Lal N


Nanostructures, Nanoelectronics, Sensing, Nanowires, Industrial Engineering,Materials Engineering,Metallic Materials (Ferrous & Nonferrous),Molecular Electronics, Nano Composites,Nano Materials,Brittle Materials,Ceramics Engineering, Composite Materials, Electronic Material Development, Porous Materials,Nano Particles, Biological Engineering,Nano Structures,Semiconductors, Polymeric Materials

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version