alexa Abstract | Short Blue Light Pulses (30 Min.) in the Morning are Able to Phase Advance the Rhythm of Melatonin in a Home Setting
ISSN: 2167-0277

Journal of Sleep Disorders & Therapy
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

It is known that light in the morning is able to induce phase advances of the endogenous clock, however most studies have tested the phase advances in highly controlled laboratory conditions. At home the environmental lighting is more variable. In theory, a high intensity short morning-light pulse in the short-wavelengths-range (blue light) should be capable of inducing phase advances. If this is also true in a home setting, this could be a firm basis supporting light treatment in late chronotypes who suffer from a late sleep phase. In a study carried out in summer, 11 normal to relatively late (habitual midsleep 4:15-6:09 hours) chronotypes (age range 23-27 years, 4f/7m) participated in two conditions: (1) 1 baseline day followed by 3 consecutive days of 30 min. blue morning-light pulses, (2) 1 baseline day followed by 3 consecutive days of 60 min. blue light pulses. Blue light was applied by use of the Philips GoLite BLU (HF3320, blue leds, intensity at the cornea 2306 melanopic-lux, 300 lux, 3.65 W/m2). During all four evenings, subjects were asked to protect themselves from light exposure (<10 lux). The response of the melatonin rhythm, calculated as a shift in dim light melatonin onset (DLMO), to a single 30 min. light pulse varied between subjects and resulted in a non-significant phase advance of 15 (±48) min. (t10 = 1.04; P = 0.33), and a significant advance of 30 (±41) min. to a single 60 min. light pulse. (t10 = 2.40; P < 0.05). After 3 days of light exposure both in the 30- and in the 60 min. light pulses condition significant phase advances of DLMO were observed; 49 (±58) min. (t10 = 2.80; P < 0.05) and 59 (±29) min. (t10 = 6.9; P < 0.001) respectively. No significant differences were found in the DLMO shifts between conditions. In addition there was a trend for a lower sleepiness score directly after waking up after using light for 3 days in both conditions (t10 = 3.38; P = 0.096, 60 min. and (t10 = 4.10; P = 0.070, 30 min.). A prelimin.ary analysis of actimetry data indicated some support for an effect on sleep timin.g. The data support the conclusion that light pulses of 30 min. in the morning on three consecutive days, in a home setting, in combination with dim light during the evenings, can be part of an efficient phase advancing chronotherapy protocol.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Geerdink M, Beersma DGM, Hommes V and Gordijn MCM

Keywords

Blue light, Home-setting, Melatonin, Phase advance, Light therapy, Late chronotypes, Sleep, Deep Sleep Therapy, Insomnia, Sleep Therapy, Sleep Medicine

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords