alexa Abstract | Simulating the Daily Evolution of West African Monsoon Using High Resolution Regional Cosmo-model: A Case Study of the First Half of 2015 over Nigeria
ISSN : 2332-2594

Journal of Climatology & Weather Forecasting
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Case Report Open Access

Abstract

Understanding the dynamics and variability of the West African Monsoon (WAM) at daily time scales will improve skillful prediction of the onset and evolution of the monsoon and thus would contribute toward food security of Nigeria. This study, therefore, uses high resolution regional COSMO-model, a weather-mode model from the German Weather Service adopted by the Nigerian Meteorological Agency, to study the daily evolution of WAM as well as the ability of the model to predict the daily characteristics of monsoon, for the first half of 2015, over Nigeria. Results show that, qualitatively, the model has the ability to predict the daily evolution of WAM, daily variability of rainfall, which includes the onset of the raining season as well as dry-spells, over Nigeria. The spatial correlations between the observation and the forecast are generally greater than 0.64, implying that the model, though, underestimates the rainfall amount as much as half of the actual amount, it nevertheless proved to have a good representation of the spatial characteristics of the rain over Nigeria. The model shows that the Inter-Tropical Discontinuity (ITD) advances northward, from the Gulf of Guinea (GOG) to the Sahelian region, by about 0.42° per week; and that for the onset of monsoon in Nigeria, the average position of the ITD should be at least 6.7°N and must not retreat south of it in the subsequent average weekly position. In agreement with earlier findings, the model also shows that the African Easterly Jet (AEJ), together with its associated core, is not only a boreal summer element but can also exist during the boreal winter with the same strength in the wind speed. The atmospheric thermodynamic properties, predicted by the model, show that for an onset of the rains, a threshold value of at least 1500 J/Kg of convective available potential energy (CAPE) may be required. The results suggest that COSMO-Model has proved to be a good tool for operational daily weather forecast; therefore, the model could also have potential for seasonal rainfall predictions over Nigeria when run in climate mode.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Eniola Olaniyan, Ernest Afiesimama, Feyi Oni and Kamoru A. Lawal

Keywords

CAPE, COSMO-model, Monsoon onset, Nigeria, Global-Warming, Ozone Layer, Weather and Forecasting

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords