alexa Abstract | Vehicular Traffic Flow Model with Driver Aggressiveness Component in a Multilane Road
ISSN: 2168-9679

Journal of Applied & Computational Mathematics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

In this study, we outline the Kerner’s 3-phase traffic flow theory, which states that traffic flow occurs in three phases and these are free flow, synchronized flow and wide moving jam phases. A macroscopic traffic flow model that is factoring driver aggressiveness is developed and its features discussed. By construction of the solution to the Riemann problem, the model is written in conservative form and solved numerically. Using the Godunov numerical method we go ahead to simulate traffic flow on a multilane road with a lane-drop bottleneck. The model is compared with the Aw-Rascle model and features of the model are shown to reproduce the features of a three phase traffic flow which the Aw-Rascle model cannot reproduce. It is also shown that the model respects aspects of traffic by responding to frontal stimuli only and it does not produce negative travel.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Kariuki E, Kimathi M and Mwenda E

Keywords

Three phase traffic theory, Conservation law, Phase transition, Smooth Complexities, Adomian Decomposition Method, Applied Mathematics, Number Theory, Sensitivity Analysis, Convection Diffusion Equations, Numerical Solutions, Nonlinear Differential Equations, Differential Transform Method , Balance Law, Quasilinear Hyperbolic Systems, Mixed Initial-boundary Value, Fuzzy Boundary Value, Semi Analytical-Solution, Integrated Analysis, Fuzzy Environments, Molecular Modelling, Fuzzy Quasi-Metric Space, Three Dimensional Steady State, Computational Model

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords