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Introduction
Lung cancer is the leading cause of death in the United States 

[1] and Taiwan [2]. According to the World Health Organization 
(WHO) classification, lung cancer can be divided into two major 
classes: small cell lung cancer (SCLC) and non-small cell lung cancer 
(NSCLC). NSCLC accounts for more than 85% of all lung cancer cases, 
and adenocarcinoma is the most common subtype. There is a large 
heterogeneity among lung adenocarcinoma patients and the response 
to chemotherapy is relative poor in the advanced stage. For example, 
gefitinib, the epidermal growth factor receptor (EGFR) tyrosine kinase 
inhibitor (TKI), is only useful for East Asian patients with a higher 
prevalence of activating EGFR mutations [3-6]. Other targeted agents 
for EGFR wild-type patients have not been systemically screened. 
Therefore, the search for novel targeted drugs is an important and 
challenging issue.

Using microarray profiling, one can identify a handful of 
differentially expressed genes from NSCLC tumor and adjacent non-
tumor tissue in each patient. The fundamental challenge is to establish 
the relationships among these carcinogenic associated genes and 
potential drug actions. One possible solution is via the “Connectivity 
Map” (http://www.broad.mit.edu/cmap/) [7,8]. The CMap system 
contains 6,100 microarray datasets from 4 cancer cell lines (MCF7-
breast cancer, PC3-prostate cancer, HL60-leukemia, SKMEL5-

melanoma) treated with 1,309 small molecular agents. Lamb et al. 
[7,8] postulated that the disease associated gene signatures could be 
compared to the CMap drug signature profiles to reveal potential 
drug lists despite that the profiles are in different cell lines. In fact, 
potential new treatments for cancers have been successfully identified 
via the CMap, including acute leukemia, colon cancer, hepatocellular 
carcinoma, neuroblastoma, NSCLC, and renal cell carcinoma, and it has 
also led to the elucidation of mechanisms involved in the tumorigenesis 
and/or pathogenesis of different cancers [9-11].

One criterion for use of the CMap is to include a pairwise array. 
However, to the best of our knowledge, few tumor/adjacent non-tumor 
pairwise arrays are available for NSCLC. In addition to our previously 
generated pairwise samples (referred to as the YM dataset) [12], we used 
two additional pairwise arrays available online, including the partial 
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Abstract
Lung cancer is the leading cause of mortality in the world. However, the urgent demand of new drugs for the 

treatment of lung cancer and the rapidly rising costs of drug development support efforts to explore methodology 
addressing these issues. Here we designed various gene signature selection methods via expression datasets 
generated from human lung adenocarcinoma tumor and adjacent non-tumor tissues to query the Connectivity Map 
(CMap), which hosts 6,100 drug-mediated expression profiles. We hypothesized that if a drug signature could 
reverse, at least in part, the gene expression signature of lung adenocarcinoma, it might have the potential to inhibit 
dysregulated pathways and thereby treat lung cancer. To test this hypothesis, 62 out of the 95 examined drugs with 
anti-tumor activities were validated via MTT and/or clonogenic assays using lung cancer cell lines and through a 
PubMed search. Subsequently, 9 functional categories, such as DNA demethylating agents, anti-psychotic and anti-
inflammation, were selected to classify 62 in vitro validated drugs. A subset of gene signatures embedded in these 
62 drug-mediated expression profiles from the CMap was uncovered, suggesting the possible reversal connection 
between drug and patient gene signatures. There were 89 differentially expressed probesets that produced a reverse 
signature, including 12.5% that follow the up-regulated (patient) to down-regulated (CMap) pattern and 16.6% with 
the reverse down-regulated (patient) to up-regulated (CMap) pattern. Such bioinformatics analysis makes functional 
connections among disease, genetic perturbation, and drug action, resulting in the systematic identification of 
potential therapeutic drugs for clinical use.
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dataset from the EAGLE (Environment And Genetics in Lung cancer 
Etiology, http://eagle.cancer.gov/) study [13] from Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and the pairwise 
gene signature is available from ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/). 

Here, we generated an additional 50 pairwise arrays for NSCLC 
and employed the differential gene expression profiles from the 
tumor compared with the adjacent non-tumor lung tissues in each 
patient to create a gene-model to query the CMap database to identify 
potential novel targeted drugs, followed by the systematic evaluation 
of the in vitro anti-tumor effects of the potential drugs. To identify 
the reverse signature probesets, we used 705 instances (chips) from 
62 drugs of 9 functional categories to determine the differentially 
expressed probesets that have a reverse signature from up-regulated 
(patient) to down-regulated (CMap) and down-regulated (patient) to 
up-regulated (CMap) patterns, respectively. For example, p21, which 
has been observed significantly down-regulated in NSCLC tumors, 
was up-regulated after trichostatin A treatment and resulted in tumor 
shrinkage in the NOD/SCID mice. This comprehensive analysis 
suggests that we could use individualized gene signatures to identify 
novel target agents, which may provide therapeutic regimens toward 
personalized medicine in the future.

Materials and Methods
Clinical samples for microarray analysis

We analyzed a total of 172 samples from three cohorts of patients 
with NSCLC via microarray analysis (Supplemental Table S1). Dataset 
1 included two lung adenocarcinoma microarray datasets used in this 
study. First, from our previous study, a total of 38 pairwise samples 
from 19 patients (GSE7670) were used for analysis via the Affymetrix 
HG-U133A chip [12]. Second, an additional 50 pairwise surgical 
samples from 25 patients (GSE27262, currently private) were subjected 
to analysis via the HG-U133 plus 2.0 chip. Among these data are 66 
stage-IA/IB and 22 stage-III/IV pairwise samples. The study protocol 
was approved by the Ethics Committee at Taipei Veterans General 
Hospital. All patients gave informed consents and signed the consent 
form individually (VGH IRB No.: 95-06-21A). Dataset 2 (GSE10072) 
was obtained from Landi et al. [13] and included 30 stage-IA/IB (15 
patients) and 18 stage-III/IV (9 patients) pairwise samples using the 
HG-U133A chip. Dataset 3 (ArrayExpress ID E-TABM-15) published 
by Shula Blum and included 36 unknown stage (18 patients) pairwise 
samples using the Affymetrix HG-U133A chip. The details of the 
patient characteristics are summarized in Supplemental Table S2-S4 
and Supplemental method.

In silico drug screening

The “up” or “down” differential probesets of individualized gene 
signatures from tumor/adjacent non-tumor in each patient was used to 
query the CMap. The potential drug list for each patient was selected 
based on the frequency of appearance among patients. Drugs that 
appeared with top-ranked frequency when querying the CMap with 
significantly negative scores were listed and compared with each other. 
The flowchart of analyzing the 172 microarray data points and the in 
silico drug screening is shown in Figure 1.

Gene Selection
Because the best method to query the CMap is unclear, we 

designed five methods to select differentially expressed genes as inputs. 
Moreover, the “up” and “down” probesets used for querying the CMap 

should not be over a total of 1000 due to the limitation of the CMap 
computational system. Therefore, all five methods were limited to 
less than 1000 probesets in each query. The first method selected 100 
probesets with the highest absolute ratios from our early- (stage IA/IB 
lung ADC) and late- (stage III/IV lung ADC) stage paired microarrays. 
Therefore, signatures including 100 up- and 100 down-regulated 
probesets were used to query the CMap. The second method and third 
method included the top 1% or 1.5% ranked up- and down-regulated 
probesets on Affymetrix HG-U133A microarray. These methods can 
identify a total of 444 or 668 probesets, respectively, as the differential 
expressed signatures. Next, fold-change, which depends on the 
expression value of gene relative to the control expression profile, was 
used to identify significant expressed probesets. Finally, Significance 
Analysis of Microarrays (SAM), a statistical algorithm that can identify 
significant genes by specific t-test [14] (http://www-stat.stanford.
edu/~tibs/SAM), was used.

Statistical procedure and gene expression profiling for 9 
functional categories of drugs 

To investigate the relationships among the drugs, their regulated 
genes and lung cancer patient signatures, we classified these 62 
effective drugs into 9 functional categories, including antibiotics, anti-

Figure 1: Flowchart of array analysis and appearance of potential drugs 
in NSCLC. The YangMing and EAGLE microarray datasets, consisting of 
early and late stage lung adenocarcinoma patient information, were used for 
data analysis, whereas array datasets from the Blum study did not have de-
tailed information and were used for validation. Five different methods (top up/
down 100 probesets, fold-change, SAM, top 1% and 1.5% ranked up/down 
probesets) were used respectively to create differential gene lists of tumor/
adjacent non-tumor tissue for querying the Connectivity Map. Only drugs with 
a p value of less than 0.05 and a negative enrichment score were retained. 
Two drug lists were generated. First, we used the probability of drug appear-
ance (> 10%) among each studied population to select drugs and a total of 
311 drugs were selected using the top up/down 100 probesets as query. Sec-
ond, using the probesets generated from all five methods to perform the same 
analysis resulted in the identification of 240 drugs. A Venn diagram represents 
the number of drugs found between the top up/down 100 probesets and all 
five methods. There are 188 drugs that overlap between the two approaches, 
including 10 drugs that have been previously studied. In this study, 84 drugs 
were selected based on the availability of well known scientific names and 
manufacturers from all 363 union drugs and subjected to validation via MTT/
clonogenic assay. There are 62 effective drugs, which include 11 drugs from 
the literature, of the 95 tested potential drugs for NSCLC.
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inflammation, anti-parasites, Ca2+ modulators, cardiovascular drugs, 
chemotherapeutic drugs, DNA demethylating agents, phenothiazine 
anti-psychotics, and others. There are (6, 10, 6, 3, 8, 11, 3, 5, 10) drugs 
and (23, 200, 29, 11, 33, 95, 197, 76, 41) instances for each functional 
category, respectively, in the CMap database. Thus, the original CMap 
expression profile (U133A chip) contains 22,283 gene expressions 
(ratio of probeset) each for 705 instances from 62 drugs within 9 
functional categories. Several statistical procedures (i.e., the size of 
standard deviation, analysis of variance (ANOVA), and the pairwise 
t-test) combined with fold-changes were employed to select gene 
profiles representing the 9 drug functions, but most were dominated 
by functional categories with larger number of drugs and instances, 
such as DNA demethylating agents and anti-inflammation. For each 
drug, 22,283 drug medians (one for each probeset) of expression ratios 
were calculated across all instances within each drug. Then, for each 
functional category, 22,283 functional medians of expression ratios 
were calculated across all drug medians within that function. One 
hundred probesets with the largest (or smallest) functional median 
ratios that were larger than log2 (1.5) = 0.585 (or smaller than -log2 (1.5) 
= -0.585) were selected as the up-regulated (or down-regulated) genes 
for that functional category. All of the probesets that corresponded to 
multiple gene symbols or no gene symbol were excluded from the final 
analysis. 624 probesets survived this screening procedure with Table 1 
summarizing these 265 up-regulated and 359 down-regulated probesets 
elected for the 9 functional categories. Two datasets were then prepared 
for later analyses. The drug-level dataset has median of expression 
ratios for each of the 624 (probeset) by 62 (drug) combinations and the 
function-level dataset has median (of medians) of expression ratios for 
each of the 624 (probeset) by 9 (function) combinations.

Cell culture, MTT™ cell viability test, clonogenic assay, and 
animal model

All cell-culture-related reagents and procedures are in 
supplemental method. Human lung cancer cell lines A549 and 
H460 were purchased from the American Type Culture Collection/
Bioresource Collection and Research Center (BCRC) (Taiwan). These 
cells have performed STR-PCR profile at BCRC. A14 was a derivative 
of A549 cells stably selected with a p53 shRNA construct [15]. Human 
lung adenocarcinoma cell lines, CL1-0 and CL1-5 [16], were kind gifts 
from Dr. Pan-Chyr Yang. H1299 stable clones (transfected with EGFR-
WT (wild-type) and EGFR-L858R mutant) were kindly provided by 

Chen et al. [17]. Cell viability was determined using an MTT assay 
and clonogenic assay were described in supplemental method. In vivo 
microPET imaging of overexpression of p21 induced by trichostatin A 
in p21-HSV1-tk expressed H1299 animal tumor model [18] was also 
described in Supplemental method.

Results
Identification of 363 potential drugs for NSCLC via the CMap 

The use of global gene expression profiling of surgically excised 
tumor samples to identify prognostic signatures or molec ular 
classification of lung tumors often generates lists of hundreds of genes 
and it is difficult to uncover novel drug targets [19-21]. Therefore, 
using a batch of genes to query the CMap may not only allow multiple 
targets to be considered simultaneously but also may identify potential 
new drugs. For our first analysis, we selected the top 100 up- and 
down-regulated probesets with the highest absolute ratio to serve as 
differential gene signatures of individual patients from all early and 
late stage pairwise microarrays of the first two datasets. We then used 
the CMap to identify potential drugs with p value less than 0.05 and a 
negative enrichment score. With the probability of drug appearance (> 
10%) among each studied population as selection criteria, a total of 311 
drugs were selected by the top 100 up/down probesets. 

However, there is no standard approach to query the CMap 
due to different input gene list, which may result in distinct analysis 
results. Unlike the traditional gene signatures selected with the most 
differentially common sets for predicting the cancer prognosis (e.g., 
two-sample t-test), we employed 4 additional methods (fold-change, 
top 1% ranked, top 1.5% ranked, and SAM) to generate different input 
gene lists to broadly cover potential drugs for lung cancer. Among 
them, SAM is the well-known statistics method for the selection 
of significant genes. Fold change is a method for selection of genes 
based on the degree of expression ratio (e.g., 2-fold), which may 
prevent the selection of genes without significant expressive change. 
Additionally, considering the limitation of query gene numbers in 
the CMap platform, we used the top 1% and 1.5% of up and down-
regulated genes to present the differential signatures. Next, we selected 
the probesets from each of 5 methods to perform the same approach, 
respectively. As a result of data fusion, 240 drugs with an appearance 
of at least 10% were selected. From the analysis of this study, the top 
100 up/down showed the highest intersection ratio (top 100 up/down, 
top 1% ranked, top 1.5% ranked, fold-change, and SAM with 60.5% 
vs. 56.1% vs. 56.4% vs. 46.5% vs. 42.4%, respectively) with fusion to 
the total of the five populations (Figure 1 and Supplemental Table S5). 
We are not able to use all five or more methods for the generation of 
the differentially expressed signature for every experiment due to the 
time constraints of gene selection. Consequently, we choose the top 
100 up/down method as our standard selection criteria for current and 
future work with the CMap. As shown in the middle of Figure 1, the 
Venn diagram represents the intersection of 311 drugs from the top 
100 up/down probesets and 240 drugs generated from fusion of all five 
methods. There are 188 drugs that overlap between the two analyses 
and 363 potential drugs as a union of these two analyses.

Validation of 62 potential drugs via PubMed search and 
biochemical assays

Of these 363 potential drugs, several drugs have been well studied 
in regards to their in vitro anti-cancer cell effects, such as LY-294002, 
resveratrol, and alvespimycin. These “familiar drugs” were subjected to 
search of the PubMed medical literature database using the search term 

Function Up-regulated
probesets

Down-regulated
probesets

Antibiotics 22 80
Anti-inflammation 34 11
Anti-parasites 97 71
Ca2+ modulator 63 42
Cardiovascular drugs 2 16
Chemotherapeutic drugs 4 100
DNA demethylating agents 96 96
Phenothiazin anti-psychotics 42 0
Others 0 0
Sub-total for probesets selected by 1 function 205 314
 By 2 functions 38 32
By 3 functions 12 8
By 4 functions 7 3
By 5 functions 3 2
Total number of selected probesets 265 359

Table 1: Number of representative probesets selected for the nine functional 
categories.
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of each drug. We then screened the resulting abstracts for relevance or 
involvement in “cancer” and/or “lung cancer”. As a result, 11 drugs 
have more publications related to cancer and lung cancer. These 
were considered as effective drugs and were excluded from further 
experimental analysis. Interestingly, 10 of the 11 drugs belonged to the 
188 drugs that overlapped between the two analyses (Figure 1).

To further validate our analysis, we selected 84 potential drugs 
(Table 2) that based on the availability of well-known scientific names 
and manufacturers. We tested the cytotoxicity of 84 drugs from the 
CMap in five lung cancer cell lines via an MTT and/or a clonogenic 
assay. To determine the role of p53 in the cytotoxic effect, we examined 
the drug effects in the A549 and the A549-p53 shRNA stable clone cell 
lines [15]. To examine the role of EGFR in drug cytotoxicity, we used 
EGFR over-expressing H1299 cells, including wild-type and mutated 
EGFR [17]. 

Of the 84 small molecular drugs screened, 51 drugs had an 
effective cancer cell inhibitory effect of an IC50< 10 µM via MTT assay 
or with an effective 50% inhibition in a clonogenic assay at 10 µM. 
Among them, 35 drugs (69%) and 46 drugs (90%) were searched via 
PubMed online literature database and related to “lung cancer” and 
“cancer”, respectively. Figure 2A-D shows that four drugs (GW8510, 
tanespimycin, anisomycin, and pyrvinium) had cytotoxic effects on 
lung cancer cells and that there was no significant difference between 
the effects in these five cell lines. Additionally, the cytotoxic ability 
of either anisomycin or pyrvinium was higher than GW8510. The 
majority of cells were killed in the presence of 10 µM of GW8510, 1 
µM of tanespimycin or 0.1 µM of either anisomycin or pyrvinium. 
Additional results are summarized in Table 2. Figure 2E shows the 
representative results of a clonogenic assay with A549 and H460 
treated with chlorpromazine. Treatment with 10 µM chlorpromazine 
reduced the colonies over 50% in both A549 and H460. Twenty-three 
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tanespimycin NS V NS V NS V V 1 ND
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15-delta prostaglandin J2 V V V V V V V X <10
resveratrol (**) V V V V V V V ND ND
luteolin NS V NS V NS V V X <10
alvespimycin (**) NS V NS V NS V V ND ND
geldanamycin (**) NS NS NS V NS V V ND ND
acetylsalicylic acid (**) NS NS NS V NS V V ND ND
sirolimus (**) NS NS NS V NS V V ND ND
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sanguinarine NS V NS V NS V V 1 <10
thiostrepton V NS V V NS N/A V <5 <5
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emetine V V V V V V V 1 ND
mebendazole (*) NS V V NS V V V 1 ND
parthenolide V V V NS V V V <5 ND
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niclosamide V NS NS NS NS N/A V >5 ND
mefloquine (*) V NS NS NS NS N/A V >5 ND
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thioridazine (*) NS NS V NS V V V >5 2.5~5
prochlorperazine NS NS NS V NS V V >5 5~10
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repaglinide NS V NS NS NS N/A N/A X <10

C
ar

di
ov

as
cu

la
r d

ru
gs

ouabain NS NS V NS V V V 1 ND
piperlongumine NS V V NS V N/A V 1 ND
etacrynic acid V NS NS NS V V V X <10
phenoxybenzamine V V NS V NS V V >5 <10
dipyridamole NS NS V V NS V V X ~10
propafenone NS NS NS V NS N/A V X <10
meticrane NS V NS NS NS N/A N/A X <10
amiodarone NS NS NS V NS V V >5 ND
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drugs reduced the clonogenic survival of these two lung cancer cells. In 
contrast, 33 drugs had no effect on cell inhibition in MTT or clonogenic 
assay, and are considered to not have cancer cell inhibition effects in 
vitro. However, through a PubMed medical literature database search 
of these 33 drugs, a small number of the drugs (e.g., procaine, apigenin, 
diltiazem, and nifedipine) were reported to have effects in different 
lung cancer or cancer cell lines (Supplemental Table S6). In this study, 
we did not include these drugs for further analysis. In summary, there 
are 62 effective drugs selected from the 95 potential drugs for NSCLC.

Evaluation the methods to query the CMap

Based on this limited biochemical data along with PubMed search 
results (62 effective and 33 non-effective), we evaluated the accuracy of 
our analysis methods. First, we used the top 100 up/down probesets to 
select differential gene signatures for querying the CMap. The potential 
drugs from different early stage (stage I) and late stage (stage III/IV) 
NSCLC populations showed an accuracy rate of 73% in YM versus 
72% in EAGLE and 62% in YM versus 61% in EAGLE, respectively. 
In addition, the accuracy of the predicted drugs in the unknown 
stage Blum dataset was 71%, suggesting that our predicted models are 
sensitive in different datasets (Supplemental Table S7A). Furthermore, 
an additional 4 methods were employed, and data fusion from the 5 
methods to select input gene lists and perform accuracy rate analysis 
was performed. As shown in Supplemental Table S7, the accuracy rate 
from each method is generally less than 70%, for example, the top 1% 
ranked (59~67%), SAM (57~67%) and data fusion (58~66%), among 
the different lung cancer datasets.

Treatment of trichostatin A results in tumor shrinkage and 
induces p21 expression 

Trichostatin A, a known HDAC inhibitor, induces transcription 
of cancer cells. Lung cancer cells have been studied regarding their 

hypermethylated status compared with normal lung cells, and many 
differentially expressed genes in NSCLC cells [22-25] after treatment 
with HDAC inhibitors have been reported. We noticed that p21 was 
significantly up-regulated in the CMap arrays after trichostatin A 
treatment and that p21 was down-regulated in NSCLC patient arrays. 
In fact, one of the mechanisms of trichostatin A induced cancer cell 
apoptosis is via up-regulation of p21 expression [26,27]. Consistent 
with previous observations, treatment of H1299 cells with trichostatin 
A resulted in the up-regulation of p21 (Figure 3A), and this drug-
targeted interaction was confirmed via an in vivo animal model 
(Figure 3B). These data and analyses suggest that the modulation of 
the expression of p21 and other similar genes might reveal drug-target 
relationships involved in NSCLC carcinogenesis.

Matrix visualization for gene expression profiling using a 
Generalized Association Plot (GAP) 

We next explored the relationships between drug-mediated 
signatures from the CMap and the signatures generated from our lung 
adenocarcinoma patients. Two final datasets were studied here for the 
624 probesets (265 up-regulated and 359 down-regulated) selected 
for the 9 functional categories as in Table 1.The drug-level dataset has 
median of expression ratios for each of the 624 (probeset) by 62 (drug) 
combinations and the function-level dataset has median (of medians) 
of expression ratios for each of the 624 (probeset) by 9 (function) 
combinations.

Generalized association plots (GAP) [28-30] were used to illustrate 
(1) gene clusters; (2) drug (function) groups; and (3) interaction of 
gene clusters on drug groups for this expression in Figure 4. Three 
matrix maps are presented in this GAP display: a gene expression 
profile map of the 624 probesets by the 62 drugs (Figure 4A); a drug-
drug correlation map between the 62 drugs (Figure 4B); and a gene-
gene Euclidean distance map among the 624 probesets (Figure 4C). In 
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acacetin (**) V NS V V NS V V ND ND
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metyrapone (**) NS V NS V NS V V ND ND
rottlerin (**) NS NS V V NS V V ND ND
trioxysalen NS V NS V NS N/A V >5 ND
securinine NS NS V NS NS N/A V >5 <10
cloperastine NS NS NS V NS N/A N/A X <10
Prestwick-685 NS NS V NS NS N/A N/A X <10
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daunorubicin V V V NS V V V 1 ND
lomustine V V V V V V V X <10
camptothecin NS NS NS V NS V V 1 ND
4,5-dianilinophthalimide (**) V V V V V V V ND ND
LY-294002 (**) V V V V V V V ND ND
thioguanosine NS NS NS V NS V V <5 ND
8-azaguanine V V V V V V V >5 <10
Y-27632 (**) V NS V V V V V ND ND
GW-8510 V NS NS V NS V V >5 ND
alexidine NS NS NS V NS N/A V 1 ND
irinotecan NS NS NS V NS V V >5 ND

aBioinformatics: from the Connectivity Map (CMap) query. bYM: Yang Ming. cEagle: Environment And Genetics in Lung cancer Etiology. dPubMed: from the online search 
(http://www.ncbi.nlm.nih.gov/pubmed/) using “drug name” and “cancer” (further validation via manual curation). eExperiment: from the in vitro cancer cell viability tests. “V”: 
selected drugs either from PubMed or CMap. “NS”: not significant by CMap search. “N/A”: no evidence linked to cancer in PubMed. “X”: not effective at 10 µM treatment or 
IC50 larger than 10 µM treatment. “ND”: not determined. “*”: drugs from the five method fusion drugs, which did not exist in the top 100 up/down drugs list. “**”: drugs that 
are well known with in vitro anti-cancer cell effects from PubMed.

Table 2: Potential drugs identified from 3 lung adenocarcinoma datasets including stage I and stage III/IV. There are nine functional groups for the 62 predicted lung cancer 
drugs, which have been validated in vitro by MTT/clonogenic assay or have been previously studied via PubMed online search.
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addition to the three matrix map, a hierarchical clustering tree (Figure 
4D) is applied to sort the Euclidean distance map in Figure 4C and 
a panel is used to illustrate gene selection mechanism by functional 
category (Figure 4E). To the right of Figure 4A is a covariate indicating 
if a probeset was selected as an up-(red) or down-(green) regulated 
gene. For Figure 4A & C, the 624 probesets were sorted by applying the 
HCT-R2E algorithm [29] in Figure 4D to the Euclidean distance map 
(Figure 4C) for the 624 probesets. HCT-R2E is an improved hierarchical 
clustering tree (HCT) with the flipping of intermediate nodes guided 
by a global trend, which simultaneously identified coherent local 
clusters with smooth global patterns in given gene expression profiles. 
As can be observed with the up/down covariate, the 624 probesets were 
sorted into two main clusters of relatively up-regulated probesets (red) 
on the top portion and relatively down-regulated probesets (green) at 
the bottom part of Figure 4A.

The permutation of the 62 drugs in Figure 4A & B was divided into 
two layers, drug-layer and function-layer. The function-layer was used 
to determine order of the 9 functional categories using the function-
level dataset while the drug-layer was employed to identify order of 
related drugs within each of the 9 functional groups using the drug-level 
dataset. For the function-layer, order of the 9 functional categories was 
determined by applying HCT-R2E to the Pearson correlation matrix 

among the 9 functions calculated using the function-level dataset. For 
drug-layer, HCT-R2E was also employed to sort, for each functional 
category, the among drug Pearson correlation matrix calculated using 
the drug-level dataset. 

From Figure 4B, we can visualize within function coherence of drugs 
on the main diagonal and between function drug correlation patterns 
on the off-diagonal. The functional categories of DNA demethylating 
agents, anti-inflammation, and phenothiazine anti-psychotics 
have more coherence (high positive correlation) within function 
relationships. Some sub-function structures that may be due to cell 
type or other mechanisms were observed as well. Most of the between 
function drugs have a weak positive correlation as denoted by lighter 
red (pink) colors on the off-diagonal. By cross-examining Figure 4A & 
C-E, we can roughly identify three relatively up-regulated (U1, U2, and 
U3) and three down-regulated (D1, D2, and D3) gene clusters among 
the 624 probesets: (D1) Genes mainly selected by DNA demethylating 
agents with a relatively strong decreased expression upon treatment 
with DNA demethylating agents and chemotherapeutic drugs; (D2) 
Genes selected by chemotherapeutic drugs only with a relatively 
decreased expression upon treatment with chemotherapeutic drugs 
only; (D3) Genes selected by antibiotics/anti-parasites/Ca2+modulator 
categories with a relatively low to medium down-regulation across all 

Figure 2: Cytotoxicity of 4 potential drugs. Drugs were tested in five lung cancer cell lines, A549, A14 (A549-p53 shRNA stable clone) and EGFR-expressing 
H1299 cells, parental (vector), wild-type EGFR (EGFR) and EGFR-L858R mutant (L858R). Cells were treated with GW8510 (A), tanespimycin (B), anisomycin (C), 
and pyrvinium (D) with various concentrations (0, 0.1, 1, 10 μM) for 72 hours, respectively. Cell viability was then evaluated using an MTT assay. (E) Lung cancer cells, 
both H460 and A549, were treated with chlorpromazine at 0, 1.25, 2.5, 5, 10 μM respectively for 10 days. Cell colonies were then counted and expressed in terms 
of percent colony number relative to the control.
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nine functional categories; (U1) A small group of genes screened by the 
anti-inflammation functional group with a strong up-regulation upon 
treatment with the anti-inflammation drugs and down-regulation 
upon treatment with the chemotherapeutic drugs; (U2) Up-regulated 
genes selected by DNA demethylating agents; (U3) Genes selected 
by anti-parasites/phenothiazine anti-psychotics/Ca2+modulator) 
categories with a relatively medium to high up-regulation across 
all nine functional categories. Several sub-gene clustering patterns 
were also determined using a more detailed classification. The most 
informative pieces of visual information are illustrated in Figure 4A for 
the interaction of gene clusters by functional group.

To study the potential reversed gene expression signatures from 
the gene-function (drug) profiling of the CMap database to the 
gene-patient profiling of our patients, Supplemental Figure S1 was 
constructed. Supplemental Figure S1 has the expression profiles (log2 
ratio of tumor to adjacent normal) of the same set of 624 probesets 
from Figure 4A on the 44 patients. In the middle of the two panels 
are the covariates indicating the up- and down-regulated patterns from 
Figure 4A and corresponding to the up- and down-regulated patterns 
derived from the 44 patients. Among the 624 probesets, 514 fell into 
the category of non-differentially expressed genes for the 44 patient 
profiles. These 514 probesets were not selected by any of the 44 patients 
as differentially expressed genes (neither up nor down). Among the 
remaining 110 differentially expressed probesets, 89 were considering 
reversed signature probesets. Of these, 45 (12.5%) followed the up-
regulated (patient) to down-regulated (CMap) pattern, whereas the 
remaining 44 (16.6%) probesets followed the reversed down-regulated 
(patient) to up-regulated (CMap) pattern (Supplemental Table S8A & 
B). 

The 45 up- and 44 down-regulated signatures in NSCLC patients, 
which were reversed by 9 functional drug categories, were analyzed via 
the ConsensusPathDB-human pathway analyzer [31] to identify and 

determine the most significant pathways of the up- and down-regulated 
with p-value and q-value, respectively. There were 8 up-regulated and 
6 down-regulated significant pathways in NSCLC patients, including 
the SCF(Skp2)-mediated degradation of p27/p21 (CCNA2, CCNE1 and 
CCNE2), the p53 signaling pathway (CCND1, CCNE1, and CCNE2), and 
the direct p53 effectors (ATF3, CDKN1A, DUSP1, HSPA1A, and LIF). 
Because p53 mutation has been observed in most NSCLC patients, such 
reverse relationships could further highlight the possibility of targeting 
p53 associated pathways [32]. Importantly, we identified that CDKN1A 
(p21) was reversed in the down-regulated signatures of NSCLC patients 
to the up-regulated signatures of the CMap (Supplemental Table S8B). 
Moreover, p21 appeared in the “direct p53 effector” pathway that is an 
important pathway in relation to cancer and p53 is the most frequently 
mutated gene in lung adenocarcinoma [33].

Discussion
In this study, we used five different gene selection methods to 

generate a list of 363 potential drugs (Figure 1), which are commonly 
occurred in the different studied populations. Additionally, a total 
of 62 in vitro validated drugs were categorized into 9 functional 
groups with anti-cancer effects in NSCLC, and gene expressions were 
correlated with each function. Finally, we obtained the reversal gene 
signatures from potential drugs to patient samples. This study may aid 
in the understanding of the carcinogenesis of NSCLC as well as the 
interactions between tumor, drug, and patient.

In addition to display the cytotoxicity of different functional drugs, 
the representative results of the in vitro cytotoxic and clonogenic tests 
for five drugs (tanespimycin, GW-8510, anisomycin, pyrvinium, and 
chlorpromazine) are shown as Figure 2. These drugs were from the 
different functional groups categorized in Table 2 (anti-inflammation, 
chemotherapeutic drugs, antibiotics, antiparasitic, and phenothiazine 
anti-psychotics respectively) and individually showed effective results 
(IC50 < 10 µM) independent of p53 or EGFR expression. These results 
imply that these drugs might overcome the mutation of p53 or EGFR, 
which are both frequently found in the NSCLC patients. Consistent with 
previous studies, tanespimycin, GW-8510, and anisomycin have been 
shown to exhibit effective cytotoxicity by targeting X-linked inhibitor 
of apoptosis (XIAP), EGFR signaling, and c-jun NH2-terminal kinase 
pathways in p53 mutant or EGFR wild type/TKI resistant NSCLC cells, 
respectively [34-36]. However, the downstream signaling of pyrvinium 
is unclear and deserves further study.

The study by Wang et al. [37] and this study both used the same 
published microarray data (GSE7670 and GSE10072). Wang et al. 
[37] used a two-sample t-test to identify differential genes from these 
two datasets, which generated 434 differential probesets (125 up and 
309 down) and 530 differential probesets (180 up and 350 down), 
respectively. They further intersected these two sets of differential 
genes to produce a common gene signature (93 up and 250 down). In 
contrast, we used each patient’s signature to identify differential genes. 
Moreover, a common drug may not be suitable for all patients who 
have the same disease clinically. To improve the degree of credibility, 
we enlarged the dataset by generating another adenocarcinoma lung 
cancer dataset (GSE27262) and used the Blum dataset to validate the 
results. Comparing the differential genes between Wang’s study and our 
top 100 up/down results, all 93 up-regulated genes and 232 of the 250 
down-regulated genes from the previous study are involved in our up-
regulated list and down-regulated list, respectively. In particular, some 
genes had a high frequency in our list; for example, TOX3 (previously 
known as TNRC9) appeared in the up-regulated gene list of 45 patients, 

Figure 3: Treatment of trichostatin A results in increase of p21 in vitro 
and in vivo. (A) H1299 cells were treated with trichostatin A for 0, 1 and 5 μM 
for 6 hours respectively. Protein expression level was then analyzed by West-
ern blot with anti-p21 antibody. β-tubulin was used as an internal control. (B) 
In vivo non-invasive microPET imaging on the p21-HSV1-tk expressed H1299 
mouse tumor model shows trichostatin A induced p21 overexpression (arrow) 
in the xenografted tumor. Enhanced accumulation of 18F-FEAU in the tumor is 
noted. The tumor without injection of trichostatin A on the left shoulder shows 
no enhanced uptake of radiotracer.
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Figure 4: Generalized association plots (GAP) for 624 probesets of the 62 drugs with the 9 functional categories. (A) The gene expression profile map of the 
624 probesets by the 62 drugs; (B) The drug-drug correlation map between the 62 drugs; and (C) The gene-gene Euclidean distance map among the 624 probesets; 
(D) The hierarchical clustering tree for sorting the Euclidean distance map in (C); and (E) The panel for gene selection mechanism by functional category. To the right 
of Figure 4A is a covariate indicating if a probeset was selected as a up-(red) or down-(green) regulated gene. In (A) and (C), the 624 probesets were sorted using the 
HCT-R2E in (D). In (A) and (B) permutation of the 62 drugs were divided into two layers. HCT-R2E was used for both the ordering of functions at the outer layer and 
ordering of drugs within each inner layer for functions. 

and AGER (RAGE) appeared in the down-regulated gene list of 66 
patients but not included in Wang’s list (Supplemental Table S9A & 
B). TOX3 is associated with breast cancer for BRCA1/BRCA2 mutation 
carriers and may be a strong carcinogenetic gene of cancer [38-40]. The 
expression for RAGE is significantly reduced in lung adenocarcinoma 
cancer tissue compared with adjacent normal lung tissue, supporting 
the view that RAGE is a tumor suppressor gene in lung cancer [41-
43]. Conversely, KLF4 (221841_s_at) was down-regulated in patients, 
but was up-regulated in the CMap. Moreover, KLF4 showed a high 
frequency in our gene signature list but was not included in Wang’s 
list [37]. Additionally, of the reversed probesets, only one up-regulated 
probeset and 12 down-regulated probesets from the patient signatures 
were included in Wang’s 93 up-regulated and 250 down-regulated 
probesets list, respectively. Therefore, our approach could retrieve 
more reverse genes for analysis than Wang’s study and might represent 
the most important target gene of lung cancer patients. Finally, several 
probesets representing the same gene were revealed concurrently in 
our analysis, such as TOP2A, COL10A1, COL11A1 or COL1A1 among 
up-regulated (Supplemental Table S9A) and SFTPC or ADH1B among 
down-regulated (Supplemental Table S9B) genes, which support the 
confidence of our analysis.

As summarized in Supplemental Table S10, there have been many 
reports using the CMap tool to target specific signaling pathways. Here, 

we demonstrate that certain groups of drugs can provide a reverse 
signature of carcinogenesis and that the embedded signatures can be 
revealed in the patient samples (Supplemental Figure S1). This approach 
provides further insight into the complex carcinogenic pathways in 
NSCLC. We have successfully identified cancer cell apoptosis in the 
presence of p21 overexpression after HDAC inhibitor treatment, 
both in vitro and in vivo. By using this platform, other pathways or 
associated genes of interest can be evaluated more efficiently with their 
previous unknown or unclear functions.

EGFR TKIs, such as gefitinib or erlotinib, were not identified from 
the CMap analysis, especially in the YM dataset, which included many 
EGFR mutant patients and may have high response to EGFR-TKIs. 
The possible explanation is that there is no chip for erlotinib treatment 
and only one chip with gefitinib treatment in the CMap array dataset. 
Other common chemotherapy drugs for NSCLC patients, such as 
cisplatin, pemetrexed, or taxanes also cannot be revealed due to lack 
of data in the CMap. However, while performing PubMed search 
for the 62 validated drugs in the clinical trial registration website: 
http://clinicaltrials.gov/, several drugs have undergone clinical 
trials, especially in the DNA demethylating agents (vorinostat and 
azacitidine) and anti-inflammation (tanespimycin, acetylsalicylic 
acid, and sirolimus) functional groups. Several drugs (resveratrol, 
alvespimycin, verteporfin, and trioxsalen) under recruiting status of 
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clinical trials suggested current clinical development. The potential 
for other functional categories without current clinical trials warrant 
further studies. In conclusion, the study result categorized nine 
functional groups of anti-cancer drugs and repurposed most old drugs 
to new anti-cancer effects, which will be helpful in the development of 
new cancer treatment strategy.
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