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Introduction
The constant evolution of medicine over the last two decades has 

meant that statistics has had to develop methods to solve the new 
problems that have appeared, and has come to play a central part in 
methods of diagnosis of diseases [1]. A diagnostic method consists of 
the application of a test with a group of patients, in order to obtain 
a provisional diagnosis regarding the presence or the absence of 
a particular disease [2]. In this work, logistic regression has been 
proposed for the purpose of estimating the effects of various predictors 
on some binary outcome of interest. Here, logistic regression regresses 
a dichotomous dependent variable on a set of independent variables, as 
a way of knowing the effects of these independent variables [3,4]. 

We, therefore here, propose to develop a matrix approach 
for solving a system of nonlinear equations, with P+1 unknown 
parameters. These methods will be applied in estimating the effects of 
risk factors on the occurrence of gestational diabetic mellitus (GDM) 
[5-7]. The proposed method will be illustrated using data on gestational 
diabetic mellitus (GDM), and have been shown to compare favorably 
with other existing methods in terms of efficiency. 

The Proposed Method
The fundamental model for any multiple regression analysis 

assumes that the outcome variable is a linear combination of a set of 
predictors, and this is represented as:
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Where β0 is the expected value of Y, when the x's are set to 0, βk 
is the regression coefficient for each corresponding predictor variable, 
xik, ε is the error of the prediction. The binary logistic model is based 
on a linear relationship between the natural logarithm (ln) of the odds 
of an event, and a numerical independent variable. The form of this 
relationship is as follows:
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The logistic regression model indirectly models the response 
variable based on probabilities associated with the values of Y. Let πi 
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be the probability that Y=1 and πi -1 be the probability that Y=0. These 
probabilities are represented as: 

( )
( )

( )

1 2

1 2

1 2

1 , ,...,

1 1 1 , ,...,

0 , ,...,

i ik

i ik

ik

P Y X X X

P Y X X X

or P Y X X X

π

π

= =
− = − = 


= = 

                  (3)

But, the general form of logistic model is given by 
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Where i=1,2,....N

And 
1

i

i

π
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 are the odds of developing any disease for a subject with 

risk factor. By logit transformation of the inverse of log odds to favour 

Y=1, we obtain the linear component as 
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Recall from Equation 6 that 
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Which, after solving for πi (the same thing as the result of Equation 
3) becomes,
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Substituting Equation 10 for the first term and Equation 11 for the 
second term, Equation 9 becomes: 

( )
0

0

01

/ 1
1

ni
P

ik kiP k
ik kk

P
ik kk

xyN
x

xi

eL Y e
e

β
β

β
β

=
=

==

 ∑ ∑  = −   ∑  + 
∏                 (12)

Use ( )x y xya a=  to simplify the first product and replace 1 with 
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This is the kernel of the likelihood function to maximize. We here 
simplify further by taking its log. Since the logarithm is a monotonic 
function, any maximum of the likelihood function will also be a 

0

0 0

1

1 1

P

k ik
k

P P

k ik k ik
k k

x

i
x x

e

e e

β

β β
π

=

= =

−

∑
= =

∑ ∑
+ +

Similarly,
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Using the inverse of logit transformation of the natural logarithm 
of the odds (log odds) to favor Y=1, we equates to the linear component 
to have: 
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Maximum Likelihood Estimation (Mle) for Logistic 
Regression

We here estimate the P+1 unknown parameters β in Equation 5, 
with MLE, by finding the set of parameters for which the probability of 
the observed data is greatest. Since each yi represents a binomial count 
in the ith population, the joint probability density function of Y is:
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 different ways to arrange yi successes from among ni trials. 

Since the probability of a success for any one of the ni trials is πi, the 
probability of yi successes is .iy

iπ  Likewise, the probability of ni-yi 
failures is (1 ) .i in y

iπ
−−  The joint probability density function in Equation 

7 expresses the values of Y as a function of known, fixed values for β. 
The likelihood function has the same form as the probability density 
function, except that the parameters of the function are reversed: the 
likelihood function expresses the values of β, in terms of known, fixed 
values for Y. Thus,
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The maximum likelihood estimates are the values for β that 
maximize the likelihood function in Equation 8. Thus, finding the 
maximum likelihood estimates requires computing the first and second 
derivatives of the likelihood function. Since the factorial terms do not 
contain any of the πi, they are essentially constants that can be ignored. 
Therefore, maximizing the equation without the factorial terms will 
come to the same result, as if they were included. By rearranging the 
terms, the equation to be maximized which is the conditional likelihood 
can be written as:
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maximum of the log likelihood function, and vice versa. Thus, taking 
the natural log of Equation 13 yields the log likelihood function:
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To find the critical points of the log likelihood function, set the 
first derivative with respect to each β equal to zero. In differentiating 
Equation 14, note that
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So that the gradient of the log likelihood in matrix form is given as:
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maximum likelihood estimates for β can be found by setting each of 
the P+1 equations in Equation 16 equal to zero, and solving for each 
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the matrix of second partial derivatives (Hessian matrix) is negative 
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The Hessian in a matrix form is given as

( ) Tl X WXβ′′ = −                    (19)

Where W is a square matrix of order N, with elements niπi(1-πi) 
on the diagonal, and zeros everywhere else. To solve Equation 18, we 
will make use of two general rules for differentiation. First, a rule for 
differentiating exponential functions:
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Applying these two rules together allows us to solve Equation 18.
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Thus, Equation 18 can now be written as: 
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Newton-Raphson Iteration Procedure 
In finding the roots of Equation 16 using Newton-Raphson method, 

we generalize the method to a system of P+1 equations. This is done by 
expressing each step of the Newton-Raphson (NR) algorithm, through 
letting oldβ  or (0)β  represent the vector of initial approximations for 
each βk, so that the result of this algorithm in matrix notation gives:
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    ( ) 1 1( )T T oldX WX X WZ where Z X W Yβ µ
− −= = + −              (25)

Where 1( )oldZ X W Yβ µ−= + −  is a vector and W is the diagonal 
weight vector, with entries πi(1-πi).

The last equation is called the weighted least square regression, 
which finds the best least-squares solution to the equation. The 
equation is called recursive weighted least squares, because at each 
step, the weight vector W keeps changing (since the 'β s are changing). 
Now, Equation 25 can be written:

1(1) (0) . ( )T TX WX X Yβ β µ
−

 = + −                                  (26)

Continue applying Equation 26 until there is essentially no change 
between the elements of β from one iteration to the next. At that point, 
the maximum likelihood estimates are said to have converged, and 
Equation 19 will hold the variance-covariance matrix of the estimates. 
Because the estimation algorithm for the parameter of the logistic 
regression model is iterative, parameter estimates based on small 
samples way fail to converge, or converge to local rather than global, 
stationary points. This informed the application of large sample in this 
study. This iterative procedure is handled by SAS software in this work.

Illustrative Example
In estimating the effects of risk factors on GDM, 1000 subjects 

(pregnant women at risk for GDM) were sampled from the five 
randomly selected hospitals from January 2010 to December 2011 in 
Ebonyi State through a retrospective study, out of which 490 (49%) 
were those less than 28 weeks of their gestational age, and 510 (51%) 
were those at least 28 weeks of their gestational age. In the total sampled 
subjects, 530 (53%) were gestational diabetic and 470 (47%) were non-
gestational diabetic. Since GDM is a dichotomous variable, it is coded 
as 0 or 1, and the independent factors considered in this work are 
Age, Category of pregnant women, Obesity, Income group, Life-style 
and exercise, F.H of diabetes, Hypertension, and Diet habit are also 
categorical and coded between 0 and 3. These are presented in table 1.

Results of Analysis
The results are shown in the following tables: Tables 2 and 3

The table 3 shows that three risk factors: Obesity, F.H and 
Exercise, were significant because for all the above variables p-value 
was less than 0.05. Since the hospitals where these data were collected 
are mainly located in the urban areas, it means that by the results 

obtained, it implies that lifestyle of urban area, taking high calories 
food, less physical activity, invention of remote control equipments 
and less exercise are the causes of incidence of obesity in the sample 
data analysized. Moreover, genetical and environmental behaviors 
are also the reasons of obesity. The reference group for obesity was 
taken as non-obese persons. The O.R for obesity was 3.017, which 
shows that an obese person has 3.017 times more chance of getting a 
significant GDM, as compared to non-obese person keeping all other 
factors constant. As the O.R for obesity was greater than 1 and the 95% 
confidence interval for obesity did not include 1, therefore, obesity has 
a positive association with GDM, and was statistically significant. The 
reference group for F.H was taken as absent of F.H persons. The O.R 
for F.H was 2.489, which means that a pregnant woman in Ebonyi State 
with positive F.H has 2.489 times more chance of getting a significant 
GDM, as compared to a pregnant woman in which F.H of GDM was 
absent. Therefore, F.H was significantly different from reference group, 
and was positively associated with GDM. The reference group for, 
exercise was sedentary life style. The O.R for exercise was 0.519, which 
is less than 1 because by general rule, if O.R is less than 1 and chi-square 
is significant, then there is a protection of exposure against outcome; 
also 95% confidence interval for exercise did not include 1, therefore, 
O.R for exercise was significantly different from reference group, and 
shows that the person who take light exercise have 0.481 probability 
of protection against GDM. In the light of the above analysis for the 
1000 sampled pregnant women, since it turns out that 3 risk factors, 
obesity, F.H and exercise were significant, that means empirical 
findings confirm concept and theory of risk factors. So clinicians and 
public health personal should take appropriate measures to control 
these risk factors, and prevention programs should be started against 
GDM. In the remaining 5 risk factors; age, category of women, income, 
hypertension and D.H, empirical findings do not confirm the concept 
and theories of risk factors. The theme of every study started with past 
literature and studies done by experts. According to the literature, 
these five variables were also the risk factors of diabetes in different 
regions of the world. 

Multivariate Version with Interaction Terms
All the interactions terms were calculated separately and tested for 

significance at 5% level of significance (Table 4).

In the sample analysis, the main effect factors: category of 
women, age, obesity and F.H were significant risk factors. Besides the 
independent factors age was interacted with gender (P=0.005), exercise 
(P=0.000), and D.H (P=0.016) showed significant effect. Similarly, 

No Variables Code number Coding Frequency

1 Age 0 if age <30, and 1 for at least 
30

0
1

247
753

2 Category of 
pregnant women

0 if <28 wks of gestational age, 
and 1 if at least 28 wks

0
1

490
510

3 Obesity 0=non-obsessed and 1 for 
obsessed

0
1

415
585

4 Income 1=High, 2=Middle, 3=Low
1
2
3

140
390
470

5 Family history 0=Absent,1=Present 0
1

551
449

6 Exercise 0=Sedentary, 1=Light, 
2=Moderate 

0
1
2

391
472
137

7 Hypertension 0=Non-
hypertension,1=Hypertension

0
1

636
364

8 Diet Habit (DH) 0=if absent,1=if present 0
1

652
348

Table 1: Code sheet of concerned independent variables. 

Variable  
2χ Df P-value Result Phi or Creamer’s V value

Age 1.350 1 0.245 N.S -0.037/0.037
Categories of women 0.451 1 0.502 N.S 0.021
Obesity 74.34 1 0.000 S 0.273
Systolic hypertension 1.166 2 0.558 N.S 0.034
Family history 58.357 1 0.000 S 0.242

Table 2: Chi-square analysis of covariates showing significance, after comparison 
with p and phi-value for the sample.

Variable  β̂ SE( β̂ ) Wald Df P-value Odds 
ratio LCL UCL

Obesity 1.104 0.142 60.597 1 0.000 3.017 2.285 3.984
FH 0.912 0.139 43.170 1 0.000 2.489 1.896 3.267

Constant -0.709 0.147 23.145 1 0.000 0.492

Table 3: Results of fitting the Multiple Logistic Regression Model, including O.R 
and 95% C.I, by using stepwise logistic procedure for the sample.
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the factor obesity was interacted with INCM (P=0.008), and D.H 
(P=0.01) was the significant factor, while the factor “D.H” (P=0.01) 
was interacted with INCM, and had significant effect. The odd ratio 
for category of women 0.365 and odd ratio for age 0.286 indicated that 
those women less than 28 weeks of their gestational age and number of 
pregnant women less than 30 years of age were protected against this 
disease. Obese (O.R=6.582, P=0.000) and F.H of GDM (O.R=2.679, 
P=0.000) indicated that obese pregnant women have 6.582 times of 
chances of disease, as compared to non-obese pregnant women, while 
the pregnant women having GDM in their family have 2.679 times of 
developing disease, as compared to that pregnant women in which F.H 
of GDM was absent. Exercise was insignificant factor, but when it was 
interacted with age, it become significant (P=0.000). The interaction of 
age with category of women (P=0.005) and D.H, (P=0.016), separately 
were the significant factors. Obesity was also significant when it was 
interacted with INCM (P=0.008), and with D.H (P=0.012), since 
obesity has “O.R”=6.582, (P=0.000) in the main effects, but when it 
was interacted with D.H, the “O.R” decreases to 2.223, (P=0.01); that 
means by using balanced or proper diet, obesity can be reduced. Some 
of these interaction terms were very important, while the others were 
not statistically significant, or explaining no biological relationship for 
interpretation. For example: in the main effect model, age and category 
of women showed insignificant effect, but their interaction showed 
significant effect with odd ratio greater than 1. Similarly, INCM and 
obesity when interact with each other gave misleading interpretation 
with O.R=0.592.

Logit Model for Overall Sample with and without 
Interaction Terms

The model with out interaction terms:

ˆ ( ) 0.709 1.104* 0.912* . 0.656*g x Obes F H Exer= − + + −

The model with interaction terms for the sample is given below
ˆ ( ) 0.140 1.009 1.252 1.884 0.986g x category of women Age Obesity= − × − × + × +

      . 0.926( ) 0.770( ) 0.850F H Age Category of women Age Exercise× + × − × +

       ( . ) 0.524( ) 0.799( . )Age D H Obesity INCM Obesity D H= × − × + ×

                                          0.634( )Obesity INCM+ ×

Summary of Conclusions
We here summarize and conclude as follows:

1. In this hospital base study, ratio of GDM pregnant women is 
greater than the ratio of non-GDM pregnant women, and the 
pregnant women from 28 weeks of their gestational age are 
more liable to diabetes than those less than 28 weeks of their 
gestational age. The pregnant women entering the hospitals for 

GDM screening, greater than thirty years of age are three folds 
than the pregnant women of less than thirty years, concluded 
that GDM is more common in people above thirty years, and 
prevalence rate of GDM clearly increased with advancing age. 
Similarly, obese pregnant women are 1.4 folds than the non-obese 
pregnant women, and pregnant women with family history of 
GDM are approximately equal to with out having F.H of GDM 
in this sample. It is also concluded from the epidemiological 
study that educated pregnant women have awareness of GDM, 
and are more careful than the uneducated pregnant women.

2. In the sample analysis, the risk factors: obesity, F.H, were 
positively associated with GDM, and factor exercise was 
protection against this disease.

Exercise is protection against this disease, that means pregnant 
women who take exercise and led a simple life-style are at lesser risk of 
GDM and other diseases, as compared to those pregnant women who 
led sedentary lifestyle. 

Recommendations
We here recommend on the ROC analysis that a threshold of 177 

mg/dl becomes the cutoff value of 50 grams GCT, for screening of 
GDM in each trimester in GDM risk women, and it is suitable for low 
BMI or non-obese pregnancy. I also recommend that semi-parametric 
GLMM method, be used in evaluating the impact of covariates in 
diagnostic testing programmes, since by comparison it is far better than 
other methods, in terms producing smooth ROC curves, and compares 
favorably with other methods. In the second aspect of the analysis, I 
recommend that since emphasis is on prevalence of GDM, pregnant 
women with more than thirty years of age, greater number of pregnant 
women from 28 weeks of gestational age than those less than 28 weeks 
of gestational age, obesity, F.H and educational level suggests that GDM 
is not associated to only single risk factor, but it may be associated by 
more than one risk factor. It is clear from the findings of the study that 
in overall sample analysis. Obesity and F.H of diabetes are associated 
risk factors; so a GDM patient or non-GDM pregnant woman must 
be aware about the consequences of a regular high or low blood sugar 
level, and amount of cholesterol in blood, so precautionary measures 
must be taken to control the sugar level. Physical activity is inversely 
related with BMI, so it is recommended to urgently adopt measures to 
increase physical activity in these populations. Only a small numbers 
of pregnant women are aware of the increased genetic susceptibility of 
their first or second-degree relatives to develop GDM, suggested for 
weight reduction and regular physical exercise. As a rapidly expanding 
society problem, GDM requires collective efforts, which must include 
giving attention to prevention. Consistent with epidemiological 
concepts, prevention of GDM should be focused by reducing the threat 
of incidence of the disease, with the help of good nutritional status, 
physical fitness and regular check up for the individuals of the society; 
secondary early detection of the disease is necessary. Clinicians should 
advise the pregnant women, especially to more than 30 years of age, 
having F.H of GDM for monitoring adequate blood glucose level, or 
at least urine test for diagnosing GDM. Advice for measuring blood 
pressure is also very necessary. The doctors or clinicians should arrange 
staged management programmes. These programmes would be very 
beneficial and economical for the society. If the probability for getting 
GDM is high after clinical prediction model, then clinicians should 
advise the patients for controlling obesity and blood pressure, motivate 
for exercise, and to use balanced diet. They should arrange seminars at 
district level. Greater knowledge of risk factors about GDM may help 
to plan prevention programmes for GDM in future. Government of 

Variable and Interactions β P-value OR
category of women -1.009 0.001 0.365

Age -1.252 0.025 0.286
Obesity 1.884 0.000 6.582

F.H 0.986 0.000 2.679
Age*Gender 0.926 0.005 2.525
Age*Exercise -0.770 0.000 0.463

Age*D.H 0.850 0.016 2.339
Obesity*INCM -0.524 0.008 0.592
Obesity*D.H 0.799 0.012 2.223
D.H*INCM 0.634 0.003 1.886

Table 4: Results of significant main effects and interaction terms of sample.
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Ebonyi State and Health Ministries, with the collaboration of WHO, 
should arrange the maximum number of seminars and conferences on 
diabetes. To educate and aware the people against GDM, media should 
play its significant role. Non-Government Organizations (N.G.O’s) 
can also play their role with the help of well- trained health care team, 
educating both patients and general public with the consequences 
and complications of this chronic disease. In rural areas, special 
arrangements should be made for educating the people about balance 
diet and about this disease. Further studies are needed to specify the 
change associated with psychosocial problems in Ebonyi State, and 
to study the genetic components of individually as well as collectively 
effect of those risk factors, which are associated to GDM.
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