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Introduction
A nanosized formulation is a promising candidate in novel 

drug delivery by encapsulating, entrapping or solubilizing the drug 
substance which is then readily able to penetrate physiological barriers 
until reaching the target site(s), such as deep as the nucleus [1-4]. Thus 
novel developments in drug encapsulation wan overcome barriers to  
existing treatments [5].  Niosomes, as potential nanosized vesicles [6-
8], can encapsulate various active compounds and promote cellular 
uptake [8-11], improve chemical stability [9-11] and reduce side effects 
[12]. Utilizing synthetic surfactants as bilayer components improves 
the chemical stability of niosomes compared to lipsomes, that are 
composed of natural lipids [10]. 

Melatonin, an endogenous neuroendocrine hormone, known as 
a sleep inducer, particularly in jet lag, acts as an adjuvant in cancer 
chemotherapy since it reduces adverse events, improves quality of life 
and sleep, increases survival and reduces cancer recurrence [13-16].  
Intranasal melatonin was shown to be bioequivalent to intravenous 
injection [17] and thus which provides an option for supportive care 
in chemotherapy particularly with unconscious patients and/or those 
with GI side effects [18-20]. Also, nasal instillation could systemically 
deliver more controlled doses of melatonin by bypassing its extensive 
and highly variable first pass metabolism [19,20].  The major concern 
of intranasal dosage is the limited volume of instillation of about 0.4 
ml or 0.2 ml per nostril [24] in human and a total of about 0.05 ml in 
rats [19,20], thus a nanocarrier should be a powerful tool in reducing 
the dose and transport the drug to inner organs. There are significant 
challenges in preparing concentrated melatonin in a readily absorbable 
form for intranasal dosing. The actual dose of melatonin is another 
issue, as various levels are reported for humans e.g. oral doses at 2-5 
mg as a sleeping aid due to jet lag and sleep disorders, 10-20 mg for 
thermal injury and 20-40 mg/d in cancer [25]. Investigations on tissue 
distribution by solvent extraction method after exogeneous melatonin 
indicate that the liver, brain, testis and GI tract can cumulate melatonin 
[21]. Subcellular distribution of melatonin was found to be highest in 
the cell membrane, followed by mitochondria, nucleus and cytosol, 
respectively [22].   

Fourier Transform Infrared (FTIR) spectroscopy has been immensely 
improved to provide an acceptable tool for detection of cellular and 

subcellular compontents, such as tissue damage [23,26,29,30]. Solvents 
for extraction and isolation of samples are not needed, reducing the 
problems with effects on confirmations and structure of complex 
biomolecules such as proteins, lipids and carbohydrates [31]. Thus, 
intact normal and diseased tissue samples, including malignancies, 
can be differentiated by identifying the chemical compositions of 
macromolecules of the complex biological samples under observation 
[26]. Spectral groups or clusters of selected bands can be identified and 
correlated by multivariate analysis [27]. Since melatonin was found to 
disorient membrane lipids [22,28], utilizing FTIR in analysis of tissues 
without solvent extraction could be a rapid and novel approach in this 
aspect.  Partial Least Squares Discriminant Analysis (PLS-DA) [33], a 
powerful chemometric method to reveal variances or combination of 
variables among multivariate data, was applied to infrared spectra for 
handling the large data sets without preliminary assumption.

Nasal delivery deals with substantially small volumes of instillation 
which might draw criticism as to whether the instilled doses could 
distribute encapsulated drug to inner organs. Thus, in this study FTIR 
was used to observe and detect changes in selected organs after nasal 
delivery of nanosized-melatonin niosomes to rats.  

Materials and Methods
Melatonin was purchased from Huanggang Innovation 

Biochemicals (China). Cholesterol (chol), sorbitan monostearate 60 
(span60), dimethyl sulfoxide and sodium deoxycholate (SDC) were 
from Sigma (U.S.A.). Chloroform and ethanol were purchased from 
BDH Laboratory Supplies (England). Glycerin was from Vidhyasom 
(Thailand).  Pentobarbital sodium (54.7 mg/ml) was from CEVA Santé 
Animale (France). All were used as technical grade.
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Abstract
Encapsulation of melatonin by niosomes for intranasal delivery was developed to serve the purpose as a 

supportive care adjuvant in cancer patients with certain conditions such as unconsciousness or GI disturbance due 
to side effects of chemotherapy, and to avoid its high first pass metabolism. Intranasal administration of melatonin 
niosomes to male Wistar rats (average body weight 150 g) at a daily dose of 20 mg/kg/d for 90 days did not show 
histological changes when compared to its control. FTIR of the nasal epithelium, liver, hypothalamus and testis 
detected some possible effect of melatonin on the membranous lipids and proteins. Melatonin niosomes of about 
100 nm, intranasally administered, could distribute melatonin to the liver, hypothalamus and testis.
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Deionized water (water) and some reagents were purified by the 
Milli-Q system (Sartorius GMBH Gottingen, Germany). The extruder 
(Lipex, Canada), polycarbonate membrane was from Whatman 
(U.S.A.). Ultracentrifuge was from Sorvall (U.S.A.) and Pharmaspec 
UV-visible spectrophotometer from Shimadzu (Japan).  Humidified 
CO2 incubator (Shell Lab, U.S.A.), Axiovert 25 inverted microscope 
(Carl Zeiss Microscopy, U.S.A.), centrifuge (Kubota 6200, Japan), 
Olympus microscopy (AxioCam, Germany), microplate reader (Bio 
Rad, Japan), ultramicrotomes (Powertome, U.S.A), GKM and GKM-
2, glass knives (Boeckeler Instrument, U.S.A) and Fourier transform 
infrared microspectroscopy (FTIR-MS, Tensor 27, U.S.A) were also 
used.

Preparationand characterization of melatonin encapsulated 
niosomes

Melatonin encapsulated niosomes were prepared by a lipid thin film 
formation and rehydration method [10].  Molar ratio of composition 
of melatonin niosomes was span60:chol:SDC:melatonin 1:1:1:5. Size 
selection of melatonin niosomes was performed by extrusion using a 
polycarbonate membrane with a pore size of 100 nm (Avextin, U.S.A.). 
Blank niosomes were prepared by the same process but without 
melatonin. A previously reported method [34] was used to evaluate 
loading capacity and encapsulation efficiency by quantitative analysis of 
free melatonin in supernatant solution and the precipitated melatonin-
encapsulated niosomes by UV spectrophotometry at 277 nm. The 
encapsulation efficiency was calculated, as the following equations:

encapsulated melatonin% Encapsulation efficiency 100
total melatonin

= ×

Triplicate samples of the melatonin niosomes were subjected to 
particle size analysis by using laser diffraction (Mastersizer 2000, 
Malvern Instruments, U.K.) and zeta potential analysis by using 
Zetasizer (Malvern Instruments, U.K.). Photomicrographs were taken 
by scanning electron microscopy (SEM, Leo 1450PV, Leo Electron 
Microscopy, England) by freeze-drying MN samples, mounting on stubs 
and then gold coating using low-vacuum sputter coating. Microscopic 
photographs of tissue samples were taken by an inverted microscope 
(Olympus IX70, Germany).

Animals 

The study protocol was approved by the Institutional Committee 
for Ethics on Animal Experiments (AEKKU 06/2554) and was designed 
and conducted in accordance to the guidelines [35,36]. Male Wistar 
rats (total 30, average weight 150 ± 5g and aged between 4-5 weeks at 
starting), were obtained from, and housed at the National Laboratory 
Animal Center (Thailand) in a room that was acclimatized and housed 
at 23 ± 3°C with 55 ± 15% relative humidity and artificial lighting 
from 08:00 to 20:00, 150–300 Lux of luminous intensity and 10–20 air 
changes/h. The rats were routinely (daily) weighed and monitored for 
body temperature, heart rate, food consumption and behavior. Each rat 
was firmly held while 0.02 ml of the niosomes was gently instilled into 
the left nostril using a micropipette.  A daily dose of 20 mg/kg melatonin 
BW/d for 90 days was intranasally administered to randomly assigned 
rats in comparison to rats assigned to receive intranasal instilled water 
or blank niosomes as the negative control groups (n = 4 each).

FTIR analysis

Upon completion of each study, the rats were subjected to intra-
peritoneal injection of Nembutal® 60 mg/kg.  Immediately after 
sacrifice, tissue samples of each organ were removed and frozen at 

-20oC. Cryosections of approximately 8-10 µm thick sections were 
laterally cut from each organ after fixing in OTC liquid (Tissuetek, 
U.S.A.). Brain sections were trimmed about 3 mm from the cerebrum 
coronally into the middle lobe from the position of hypothalamus of 
Bregma -3.00 – 3.12 mm and Interaural 6.00-5.88 mm [37]. Nasal 
tissue samples laterally sliced from the left nostril of each rat and nasal 
vestibule which contained ciliated nasal epithelium cells, non-ciliated 
cells and basement membrane were selected from about 10 slices. The 
left lobe of the liver was separated, fixed and cross-sectioned sliced for 
about 2 mm until reaching the middle of the tissue sample, observed 
as the largest area of tissue slice, and then mounted on Ag/SnO2 or low 
e-slides (Kevley Technologies, U.S.A.) for FTIR-MS analysis. In each 
of the planes, the first and third sections (0.01 mm in thickness) were 
thaw- mounted of the slide surface of the low-e slides. The samples were 
kept in a humidity-controlled chamber. 

The FTIR spectrum of each sample was scanned in reflection mode 
over the spectral range of 4000 – 800 cm-1 at spectral resolution of 4 
cm-1 with 64 scans and an aperture size of 70 × 70 µm. The background 
spectra were acquired from a free area of the low-e slide and was 
measured every 5 spectra from the sample.  FTIR spectra were processed 
using OPUS NT 6.5 the Unscrambler 10.1 software (Bruker Optics, 
GermanyCAMO, Oslo, Norway). Second derivative spectra, obtained 
using a Saviztky–Golay smoothing function (913 points) and vector 
normalized spectra using extended multiplicative signal correction to 
account for differences in sample thickness, were calculated to minimize 
baseline differences and allow easy visual comparison. Integrated areas 
were calculated for bands attributable to protein (amide II; 1565–1515 
cm-1) and lipid (ester carbonyl; 1750–1720 cm-1). PLS-DA was applied 
to about 150 infrared spectra of each sample. 

Results and Discussions
The melatonin-encapsulated niosomes (Figure 1) showed well-

defined spherical vesicles with particles sizes of about 84 – 102 nm 
which corresponded to the average diameter of 86 ± 3 nm obtained from 
the laser diffraction method. An average zeta potential of -54.4±0.6 mV 
indicates a negatively charged interface which could prevent particle 
aggregation and therefore high stability. Encapsulation efficiency of 
melatonin in this noisome formulation was about 95 ± 0.1%, indicating 
that the nanosized niosomes with the use of co-surfactants, span60 and 
sodium deoxycholate, could associate melatonin at a proportionally 
high extent.  

Normally, endogenous melatonin is produced by the pineal gland 
during the night time about 21:00 with a peak between 1-4 am [25]. 
After that the level of physiological melatonin reduces to a trough level at 
daytime; thus the time of sacrifice was about 10 am to 2 pm to minimize 

200nm

Figure 1: Scanning electron microscopic photograph of melatonin-encapsulated 
niosomes (25,000×)
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effects of endogenous melatonin. Control groups allowed monitoring 
of endogenously produced melatonin, which could generally be lower 
than 10 pg/ml [38].

An FTIR spectrum of pure melatonin standard showed major 
peaks of functional groups at 3306 and 3260 cm-1 (N-H bending and 
C-N stretching), 1492 and 1550 cm-1 (aromatic –C=), 1630 cm-1 (C=O), 
1180 and 1217 cm-1 .(-C-O)in agreement with previous studies [39,40].

After intranasal administration of repeated doses of a total of 
180 mg/kg, divided into 20 mg/kg/d for 90 d, infrared mapping and 
imaging techniques were introduced to chemically investigate based 
on peak areas under specific bands of tissue components. The tissue 
samples selected were nasal epithelium as the first area exposed to the 
instilled melatonin niosomes. This route is potentially a transport path 
of melatonin to the brain [41], and the rats showed signs of about 15 
min sedation after each dose, thus potentially affecting hypothalamus 
which was, thus, analyzed by FTIR. Liver is the vital organ which mainly 
metablized melatonin, thus subjected to the analysis.  

Microscopic pictures of nasal epithelium exposed to 90 d repeated 
doses of 20 mg/kg/d of melatonin in niosomes was illustrated in Figure 
2(b) in comparison to that of the negative control, shown in Figure 
2(a) did not remarkedly detect any difference. FTIR spectra of the 
intervention and control group, Figure 2(c) resembles with the peaks 
at 1080, 1210, 1235, 1290, 1340, 1395, 1465, 1550, 1650, 2850, 2870, 
2920 and 2960 cm-1. The extent of the second derivatives, Figure 2(d), 

was slightly deviated at 1656 and 1546 cm-1 without shifting. PLS-DA 
analysis showed moderate correlation and low discrimination (p > 
0.05). It is implied that no clear biochemical changes were detected and 
assumed that the melatonin niosomes at a repeated dose of 20 mg/kg/d 
did not affect the nasal epithelium.

Cryosections of the hypothalamus from the treatment group 
showed microscopic resemblance to that of the control group, as shown 
in Figure 3(a), 3(b). FTIR spectra of the intervention group, Figure 3(c), 
showed higher peaks at 1400, 1465 and 1750 cm-1, the shoulder peaks 
at 2960 cm-1 for CH3 asymmetric stretching as well as smaller peaks 
at 1465 cm-1 from CH2 bending, mainly lipids, were slightly different. 
Amides I and II, at 1650 and 1550 cm-1, respectively, resemble while 
the shoulder peaks at 1750 cm-1 of carbonyl stretching mainly from 
lipids were deviated. PLS-DA of the FTIR spectra within these regions 
between hypothalamus samples of treated and control groups could 
differentiate these deviations, which were shown to be well correlated 
(r2= 0.97).  

Liver samples subjected to FTIR analysis gave results as shown 
in Figure 4, indicate dominant peaks of Amide I and II at 1650 and 
1550 cm-1. Rats receiving repeated doses detected some changes at wave 
numbers 2850 and 2920 cm-1, mainly corresponding to CH2 stretching 
mainly lipids, and those 2870 cm-1 and 2960 cm-1 corresponding to CH3 
symmetric stretching of lipids and proteins, similar to the previously 
reported FTIR spectra of normal liver tissue of rats [42]. These suggest 
some cumulative effects of melatonin on lipid, potentially at the cell or 
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Figure 2: Analysis of microtomed section of the nasal cavity of rats: microscopic 
photographs (20×) of (a) the control and (b) the intervention receiving a repeated 
dose of MN 20 mg/kg. (c) FTIR spectra of the control (dot line) and the interven-
tion (solid line); (d) the relevant second derivatives of the same spectra normal-
ized by extended multiplicative signal correction; (e) PLS-DA analysis of FTIR 
spectra of the control (●) and intervention groups (■) and (f) prediction data from 
the PLS-DA analysis
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Figure 3: Analysis of microtomed section of the hypothalamus of rats: micro-
scopic photographs (20×) of (a) the control and (b) the intervention receiving a 
repeated dose of MN 20 mg/kg. (c) FTIR spectra of the control (dot line) and the 
intervention (solid line); (d) the relevant second derivatives of the same spectra 
normalized by extended multiplicative signal correction; (e) PLS-DA analysis of 
FTIR spectra of the control (●) and intervention groups (■) and (f) prediction data 
from the PLS-DA analysis
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nuclear membrane [32]. PLS-DA of the liver samples from the single 
dose group showed score plots of the 2 non-distinctive areas in the 
principal components, Figure 4(e), however, those from intervention 
group gave linear correlated score plots (r2 = 0.94). This suggests that 
repeated doses of intranasal melatonin niosomes influenced some 
changes in the liver cells, the main site of its metabolism. 

Microscopic pictures of testis samples of control and repeated dose 
groups showed morphological similarities between treatment and 
control groups, Figure 5(b), 5(a). FTIR spectra of the treated and control 
groups define dominant peaks at 1650 and 1550 cm-1, respectively, 
representing Amides I and II, while the shoulder peaks at 1750 cm-1 of 
carbonyl stretching mainly from lipids were deviated. PLS-DA of the 
FTIR spectra within the regions between 3050-800 cm-1 of the testis was 
correlated (r2 = 0.91).  

Melatonin, a small size amphiphilic substance with high 
partition coefficient value, i.e. log P of 1.2 [43], is preferentially 
located at hydrophilic/hydrophobic interfaces and could disorder the 
phospholipids at CH2 asymmetric stretching and strong hydrogen 
bonding with carbonyl stretching and PO2- group. Melatonin has been 
shown to influence membrane properties by partitioning into the 
bilayers and locating at the bilayer-water interface [44]. It can easily 
cross all the anatomic barriers including blood brain barrier [40] 
or transport from nose to brain [41].   Exogenous melatonin could 
disorient the dynamic of lipids and induce a stretching in hydrogen 

bonding between the functional groups of melatonin in the membrane 
of the brain [28]. This structural arrangement enables melatonin to 
protect all cellular materials from oxidant agent. Tissue distribution of 
melatonin in this study was shown to be in line with previous reports 
[21,22], but shown to be affecting lipids or fatty acids, potentially the 
membrane of cells, mitochondria or nucleus, rather than proteins [45].  
Niosomal structure with lipid and surfactants formed as vesicles may 
also accommodate melatonin and promote its systemic delivery into 
inner organs. Liposomes with small unilamellar vesicles and a diameter 
of 25-50 nm have been known as active targeting nanocarriers due to 
their smaller size but low drug load efficiency and poor stability limit 
their usage [47].  

Since the dose of melatonin used in this study was intended to 
be at the borderline of that known to cause sedative side effect by 
intraperitoneal and intraveneous injections [46], it was not a toxic level 
which caused obvious histological changes in the tissues. The use of 
surfactants in this niosomal formulation did not cause histological 
damage to the nasal epithelium as shown in a previous report [48]. 
Melatonin distributed rapidly in vivo and care was taken to avoid the 
circadian effects in the study design. At the subcellular level, melatonin 
can interact with lipids of biological membrane [28] and preferentially 
forms H-bonds between N-H group of the melatonin and polar 
groups of surfactants [44]. Its cytoprotective effect, potentially a result 
of enhanced cellular respiratory function of mitochondria in which 
melatonin level is higher than that in plasma [15], means that it might 
not be possible to monitor its fate in the body by conventional methods. 
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Figure 4: Analysis of microtomed section of the liver of rats: microscopic photo-
graphs (20×) of (a) the control and (b) the intervention receiving a repeated dose 
of MN 20 mg/kg. (c) FTIR spectra of the control (dot line) and the intervention 
(solid line); (d) the relevant second derivatives of the same spectra normalized by 
extended multiplicative signal correction; (e) PLS-DA analysis of FTIR spectra of 
the control (●) and intervention groups (■) and (f) prediction data from the PLS-DA 
analysis
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Figure 5: Analysis of microtomed section of the testis of rats: microscopic photo-
graphs (20×) of (a) the control and (b) the intervention receiving a repeated dose 
of MN 20 mg/kg. (c) FTIR spectra of the control (dot line) and the intervention 
(solid line); (d) the relevant second derivatives of the same spectra normalized 
by extended multiplicative signal correction; (e) PLS-DA analysis of FTIR spectra 
of the control (●) and intervention groups (■) and (f) prediction data from the 
PLS-DA analysis
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Our histological observations and FTIR results gave complimentary 
information. Despite minute concentrations of melatonin which could 
interact with the complexities of the biomolecules involved in its 
biochemical mechanisms, the FTIR used in this study was shown to be 
able to detect small changes in overall tissue compositions after delivery 
by nanosized niosomes without tissue extraction by solvents.

Conclusions
Intranasal administration of nanosized melatonin-encapsulated 

niosomes at 20 mg/kg/d for 90 days was shown to distribute to the 
brain, liver and testis by FTIR analysis. Hence, the delivered melatonin 
niosomes caused some interaction with cellular lipids, and possibly 
expression of some cellular protein, without causing cellular damage.  
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