
Open Access

Kabo-bah et al., 1:6
http://dx.doi.org/10.4172/scientificreports.302

Research Article Open Access

Open Access Scientific Reports
Scientific Reports

Open Access

Volume 1 • Issue 6 • 2012

great concern because of the innovative and fast way it lowers the 
concentrations of the BOD and COD concentrations [6]. These bacterial 
technologies have been seen as necessary protocols towards sustainable 
management of urban water systems. However, there is a lack of 
models for forecasting and monitoring of the nutrient concentrations 
during such treatment campaigns. Predictive modelling of nutrient 
storage in rivers is an important aid to monitoring exercises of urban 
rivers. For instance, mathematical expressions derived by Vollenweider 
were used to estimate the fate of phosphorus in water bodies [7]. 
The challenge was that measurements such as lake’s areal surface, 
areal water load, lake water’s residence time and inflow phosphorus 
concentration were used to estimate total phosphorus. In a typical river 
restoration program with bacterial technology, these measurements 
are irrelevant. In another study, statistical models were successfully 
used to investigate the Escherichia coli concentrations in beaches in 
Lake Michigan [8]. Also, the fate of faecal indicators were modelled 
in the UK using digital land use maps [9]. Further, another study 
on lakes in the U.S used regression models to monitor nutrient and 
bacteria concentrations in real time [10]. These models were typically 
applied to lake conditions, and parameters used were far different 
from those usually concerned with in bacterial technology programs 
for rivers. Therefore, mathematical models to predict total phosphorus 
dynamics to support monitoring, planning and management of urban 
rivers during bacterial technology programs remain a major setback. 
The estimation of total phosphorus presence in urban rivers is an 
important indicator for understanding eutrophication problems [11]. 
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Introduction 
The water quality management is a major issue in China as the 

economy grows fast to take up the lead in the world. Urbanized streams 
and rivers are exposed to high increases in nutrient loads. This influences 
their aesthetics. High-polluted rivers possibly reduce their capacity to 
withstand incoming storms and floods or excessive precipitation. The 
study of nutrient dynamics has been conducted in several parts of 
the world [1]. The restoration of urban rivers can possibly contribute 
towards flood prevention and effective control. Large cities are growing 
bigger in terms of population and industrial activity yearly. Due to the 
availability of jobs, advanced technology and other social opportunities, 
most people prefer to live in the cities. As noted in a recent research, 
urban growth is changing and populations have increased from 
15 to 50% globally [2]. In urban ecological sustainability, nutrient 
recycling has been recommended as the best alternative for wastewater 
management. Urban rivers are subjected to sewage disposal and other 
waste as a result of poor practices from the community. Urban water 
and wastewater planners in China are struggling to meet the growing 
water and sanitation demands while attaining sustainable urban water 
system [3]. River restoration campaigns have been identified to support 
Agenda 21 and recent COPs 36 discussion on Climate Change [4,5].  

Several techniques have been employed over the years towards 
stream and river restoration. In general, the techniques involved 
re-aeration using weirs shift in effluent discharge location, use of 
oxygenator to pump air into water body and use of engineered 
constructed wetland. Regarding, the various research into the cost 
and feasibilities of all these methods, wetlands were found to be the 
most efficient in treating streams or rivers. Wetlands have been 
found to remove significant amounts of nutrients (i.e. over 70%), 
and are far better for long-term maintenance and management. The 
bacterial technology has been used for many years in many countries 
for industrial and domestic wastewater treatment. However, the use 
of such a method for the restoration of urbanised rivers in China is 
relatively new. For instance, the method has been successfully used in 
the treatment of lakes, wastewater treatment plants and urban streams 
in Shenzhen, Rui’an and Wuxi of China. The method has received 
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Abstract
The expensive nature of water quality field campaigns calls for mathematical models to support forecasting 

of  indicators. This is particularly important for bacterial technology for urban rivers where data is usually rare but  
rapid reporting of preliminary results during such project implementation is essential. This research developed  
mathematical models to estimate total phosphorus given a set of water quality indicators (NH3-N, pH & COD) 
are available. The models were tested with adjusted R2, corrected Akaike Information Criterion (AICc), Bayesian  
Information Criterion (BIC), PRESS and RMSE. All models indicated a prediction error (RMSE < 20%) except 
TPM 3 (RMSE = 20.2%). This prediction error confirms with measurements error of 15-20% for most water quality 
variables. The TPM 1 mathematical model is recommended as the best option for forecasting purposes in water 
quality modelling. The research can contribute significantly towards numerical water quality modelling in China and 
maybe in other countries having similar water quality problems as discussed in this paper. 
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derive the models. The validation of the models was done using the 
independent dataset from Xuxi River sampled in October 2009 (Table 
3B in appendix). The datasets recorded daily measurements of Total 
Phosphorus (TP), Ammonia (NH3-N), Chemical Oxygen Demand 
(COD) and pH. Due to the scarce nature of data from such projects, 
it was assumed that derived model’s ability to predict effectively the 
variables from an independent dataset implied that, the derived model 
was functional for practical purposes. This is because the climatic and 
weather conditions of the two datasets were different and if the derived 
model predictive power was good, this implied its appropriateness for 
future practical use. The Ministry of Environmental Protection 2009 
report on surface water quality reported that about 42.7% of the rivers 
in China varies from Grade IV to V, which represents a fairly poor 
water quality status. This implies that about 42.7% of most rivers in 
China are not suitable for aquatic life and domestic uses. Therefore, 
we selected the Fenghu- Songyong Rivers as a representative case for 
majority of the rivers which are in the inferior category of Class V in 
China (Table 3A in appendix). 

The Virtual Beach (VB) MLR model 

The VB Multiple Linear Regression (MLR) Tool by USGS was used 
to support the work of this study. The study employed the statistical 
capability of the package to handle multiple linear regressions. This was 
used to develop  the model for predicting the fate of TP against a given 
set of water quality variables. The MLR model [13] is given by

 
α α ε=

=
= + +∑0

n
i n i j
j n

P X

(1) Where P is the predicted total phosphorus α0 is the intercept 

αj is the slope for the ith explanatory variable 

ε is the remaining unexplained noise in the data – error  

The MLR analysis is dependent on least squares method to fit models. 
It is therefore subject to many considerations i.e. variable interactions, 
multicollinearity and model selection [14]. The VB uses backward 
elimination method to help the user select the best appropriate model 
with the specified explanatory variables. The VB model facilitates 
model development and offers better chances for developing good 
models with limited datasets. The VB has been successfully used to 
develop models for the fate of biological contaminants in beaches [14-
16]. The VB has a function to perform data transformations. By default, 

So, this research developed mathematical algorithms to model the 
fate of the total phosphorus in urbanised biologically treated rivers. 
The developed algorithms were tested with independent data sets 
from other restoration experiments. The research envisages enormous 
contribution towards recent works in numerical water quality 
modelling, management of wastewater treatment plants and possible 
support towards approximation of nutrients in modelling packages 
such ASM1, ASM2, ASM2D or ASM3 [12]. 

Methods 
Study area 

The research data was obtained from a biological treatment 
project in the Rui’an city in the Zhejiang Province of  China. This 
project was undertaken in the months of November and December 
2010. The results of this data  included daily measurements of Total 
Phosphorus (TP), Ammonia (NH3-N), Chemical Oxygen Demand 
(COD) and pH. The project was implemented in two riverine systems: 
the Fenghu-Songyong River. Six sampling points were observed and all 
measurements used for this research (Figure 1). The source of Fenghu 
River is Liangmian river and the outlet is Wenruitang river. The 
Songyong River flows directly into the Fenghu River. The study area 
is characterized by relatively warm weather conditions, short duration 
of winter and longer summer. The precipitation period for this area 
is divided into three parts: May to April, May to June and August to 
September. This is partly because the study is located in the typhoon 
zone of China. The Songyong River is about 280m long. The breadth of 
the Songyong River averages 5-18m and the water depth is about 1-3m. 
The Fenghu River is about 740m to the outlet. This river has a breadth 
averaging between 6-15m and the water depth of about 1m. 

The independent datasets were obtained from the Xuxi River. 
The Xuxi River is located in the Chang Nan District of the Wuxi City, 
Jiangsu province. The total length of Xuxi River is 1.36 km. It has an 
average surface width of 4.50 m and water depth of 1.40 m. The poor 
environmental sanitation around this river contributes towards the 
high sewage loads in the river. It is estimated that about 10,000m3 of 
sewage is discharged daily into the river partly because of the non-
existence of the sewage treatment facility [6]. The river is generally 
characterised by dark brown sediment and floating algae causing the 
river to appear dark green.  

Bacterial technology 

The purpose of this paper is not to reinvent the wheel by narrating 
all the processes involved in this particular method. The emphasis 
is more on the ability to used monitored data for the derivation of 
the algorithms. In this particular method, the selected bacteria and 
microbial accelerator were directly injected into the river to activate 
the native bacteria. In all, thirty-four buckets each containing 150kg of 
bacteria were used for restoring the quality of the Fenghu-Songyong 
River. For convenience of the method, bacteria were cultured nearby 
the river and injected into the six sections (Figure 1). 

Data  

The derivation and testing of the models were done using two 
independent datasets – the bacterial technology experiments in Fenghu 
and Songyong Rivers (FSR) in the Rui’an city, Zhejiang province and 
Xuxi River in Jiangsu province. The data from FSRs was obtained in 
December 2010 (Table 3A in appendix). This FSRs data was used to 
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Figure 1: Study area indicating sampling points in Rui’an region, china
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MLR equations are linear and this has the tendency to limit value of 
explanatory variables. VB offers a number of transformation methods 
such as square root and square. 

Model evaluation 

VB offers several options for checking the fits of the selected models 
and the forecasts. In general, goodness of fit and predicative capacity 
are important to describe a model’s ability to predict. In this particular 
paper, emphasis was laid on the use of adjusted R2 ( 2

aR  ), Prediction 
Sum of Squares (PRESS), Corrected Akaike Information Criterion 
(AICc), Bayesian Information Criterion (BIC) and Root Mean Square 
Error (RMSE). The ( ), AICc and BIC were applied to choose the most 
suitable model for description of the fate of total phosphorus. The 
PRESS and RMSE were used to determine the predictive power and 
accuracy, respectively, of each model.  

Generally, R2 tend to increase as we add more variables and 
hence picking the biggest R2 will not necessary select the best model. 
This mostly results in over-fitting. Therefore R2 is simply perfect for 
situations in which models have the same number of variables. For 
the purposes of this research, the adjusted R2 was used. This was to 
penalize overly complicated models as in the equation below: 

( ) −
= − − 

2 211 1a p
nR R
n p  (4) Where p is the number of models.  

The adjusted R2 has been exhaustively used to illustrate model 
performance in several literatures [17,14,13]. The Akaike Information 
Criterion (AIC) [18] evaluate the goodness of fit of a selected model. In 
the most general form, the AIC is given by 

AIC= 2i-2In(j) (5) Where i is the number of the variables in the 
model, and 

j is the maximized value of the likelihood function for the estimated 
model.  

For a given selected models for a particular data, the preferred 
model is the one with the minimum AIC value. AIC shows significantly 
the degree of goodness of fit of the model and also ensures the degree 
of penalising when increasing the function of the number of estimated 
variables. AICc is AIC with correction for finite sample sizes. In fact, 
AICc is AIC with more penalties for extra variables in the model. [19] 
in their research found that it was strongly recommended using AICc 
(Equation 6). The AICc was a refinement by [20] to cater for the bias 
in regression for smaller sample sizes. In this research, the AICc was 
therefore adopted. It was also realised that the use of AIC presented 
better results compared to BIC. Despite this, the BIC were included in 
the research to complement the works of the AICc estimates. The BIC 
penalises complex models most and gives preference to simpler models 
in selection. The generic form of BIC is shown in equation 7. BIC is 
commonly known as the Schwarz criterion [21].  

+
= +

− −
2 (1 1)

1c
iAIC AIC

n i
 (6) Where i is the number of parameters  

= − +2 * log (log ) *BIC L N d  (7) Where N is the number of data 
points in the observed data 

K is the number of parameters to be estimated 

L is the maximised value of the likelihood function for the estimated 
model 

The PRESS is the sum of the squared external residuals [22]. See 
PRESS in equation (2, 3).  

=
=∑ 2

( )1

n
ii

PRESS e (2) 

Where, 

= −( ) ( )i i ie Y Y  (3) 

The external residual for the ith observation is equal to the 
calculated external predicted value Ȳ(i) without the use  of the ith 
observation. The external predicted values and external residuals are 
independent of Ȳ(i)and Ȳ(i) is not used in fitting the regression model 
[22]. The best regression model will have the smallest predictive sum 
of squares.  

The VB tool uses Genetic Algorithm (GA) to effectively and 
efficiently search for the best possible MLR model  [23]. GA uses a class 
of stochastic search procedures called evolutionary algorithms. These 
algorithms use computational models of natural processes to develop 
computer-based problem solving systems [24]. The process mimics the 
natural biological phenomena where organisms produce successive 
generations. The application of GAs in hydrological and water quality 
modelling is receiving attention in recent times [25-28].

Results and Discussion 
Model development 

The models were derived and their evaluation statistics computed 
using the VB tool. The TP was modelled as the dependent variable 
and all other variables (NH3-N, COD and pH) were modelled as 
independent. These produced various possible models that could 
be used to practically estimate the values of TP. For a complete 
understanding of the permutations used to derive this, [23]. Seven (7) 
models (TPM 1, TPM 2, TPM 3, TPM 4, TPM 5, TPM 6 and TPM 
7) with an adjusted R2 greater 75% were considered to be appropriate 
for practical purposes. The models are described in Table 1 below with 
the relevant computed statistics for , AICc and BIC for each of the 
model. Ranking the models in terms of goodness of fit ( 2

aR  ), the TPM 
1 ranked first followed by TPM 3, TPM 7, TPM 2, TPM 5, TPM 6 and 
TPM 4 respectively. The AICc further checks the goodness of fit of the 
model by penalising the addition of independent variables. Using this 
criterion, TPM 1 model has the lowest AICc value and indicates the 
most appropriate. Again, other models such as TPM 3, TPM 7, TPM 2, 
TPM 5, TPM 6 and TPM 4 ranked after TPM 1 using this criterion. The 
BIC statistics give the same rankings for the models. In this particular 
instance, all the statistical tests provide the same rankings for all the 
models. It is fairly correct to say that each of these selection criteria 
give a reasonable way for model selection. This confirms with previous 
research that AICc, 

( 2
aR  ) and BIC are appropriate techniques for the selection of 

regression models [29]. Therefore, it can be observed that based on 
the available data, each of these models is equally appropriate for 
practical use. However, if all measurements of pH, NH3-N and COD 
are available, TPM 1 is the most appropriate (for use). 

These derived models provide a basis for estimating total 
phosphorus with few measurements. For instance, TPM 7 and TPM 
5 can be easily estimated with measurements of pH and NH3-N. 
This is practically economical for water resources management and 
wastewater treatment monitoring. Also, the presence of pH, NH3-N 
and COD show a good estimation of TP as shown in TPM 1. For general 
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restoration project involve in the determining TP, measurements of 
these three parameters may be adequate. 

Evaluation 

The models derived (Table 1) were tested with measurements from 
another bacterial technological experiments in Xuxi River, Zhejiang 
Province of China. The correlation of the plots of the observed data (TP) 
and the predicted values from (TPM 1, TPM 2, TPM 3, TPM 4, TPM 5, 
TPM 6 & TPM 7) are shown in figure 1 & 2. These illustrations indicate 
the linearity behaviour of the observed and predicted measurements. 
All plots show a relatively high correlation between the observed and 
predicted values.

The derivation of the regression models in the field of bacterial 
technology of streams is relatively new. As a result it is very difficult 

to conduct comparative analysis of findings here with related 
research. Notwithstanding, a recent study on real-time water-quality 
monitoring using regression analysis to estimate nutrient and bacteria 
concentrations in Kansas streams, [10] found that the derived 
mathematical models produced R2 values of (0.509~0.964) for total 
phosphorus prediction. This estimation was based on independent 
variables i.e. turbidity, water temperature and specific conductance. 
In this research, the independent variables used are different. Also, 
the applied , which is a far better criterion than R2 [13] was used. The 
R2 values show a range of (0.793~0.858). Comparatively, the results 
presented in this research show better prediction capabilities. 

In order to assess the predictive power of each model, additional 
statistics were introduced the PRESS and RMSE. It is imperative to test 
the predictive power of the model to test its reliability and practical 
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Figure 2: Illustration of validation plots of (TPM 1, 2, 3 & 4) against TP
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relevance. The smallest PRESS value indicates the best predictive 
model. The results shown (Table 2) show that TPM 1 is the best choice. 
It also has the lowest RMSE of 0.167. In general, all other models show 
a relative RMSE of less than 20%. Measurements in water quality have 
typical errors in the range of 15-20% for most water quality variables, 
and sometimes higher (30-40%) for BOD [30,31]. In this case, the 
prediction error of less 20% justifies the probable use of all models for 
forecasting except TPM 3 (RMSE slightly >20%).

The TPM 1 shows a better predictive power when checked 
against the AICc and BIC statistics (Table 2). Therefore, it is strongly 
recommended for predictive works under bacterial technology in urban 
streams and related studies. It is envisaged that for rapid reporting of 
preliminary results under the bacterial technology to stakeholders 
involve in such a project, these algorithms will be useful to achieve this 
goal. However, the difference between the performance of TPM 1 and 
the others is not significant in practical terms. As a result, depending on 
the work required or the available measured data for predictive works, 
each of these models has a good chance of providing reliable results as 
discussed. 

Conclusions 
Bacterial technology for restoration the water quality of urbanised 

polluted rivers promises to have appropriate use for the majority of 
polluted rivers in China. The past decade has seen some experimental 
and pilot projects through the use of this technology in parts of China. 
Related data on nutrient concentrations have been collated and 
collected during these projects. There is limited or non-existent work 
on mathematical models for forecasting and planning of biological 
treatment programs in urban streams or rivers. The models have 
shown a good performance against AICc, BIC and RMSE statistics. 
The recorded RMSE for all models was less than 20% and represent 
a comparative range with measurement errors (15-20%) associated 
with water quality variables. The TPM 1 shows the best choice of all 
the seven (7) models. However, the significant difference between the 
models in terms of practical relevance is small and hence, all models 
are equally good enough depending on the type and use of research. 
The derived models in this research envisage a contribution towards 
water quality monitoring and management of urban rivers and streams 
in China. It is also believed that, with urban rivers and streams in other 
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parts of the world with similar conditions like the Class V standard 
grouping of the Chinese National Board, might be applicable to use the 
algorithms developed here.
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Model 
Number

Description of Model Evaluation Statistics

 
2
aR              AICc                 BIC

TPM 1 TP=0.273-0.377*[pH]+(93.04Ee-
04)*([pH]*[NH3-N])+(11.86e-
04)*([pH]*[COD])

0.897          -2.44.33    -3.10.14

TPM 2 TP=(28.025e-04)+(93.879e-
03)*[NH3-N]

0.836         -213.14      -282.94

TPM 3 TP=0.453+(11.845-04)*([NH3-
N]*[COD])

0.874         -232.09      -301.89

TPM 4 TP=-0.955+(20.326e)-
03)*[COD]+0.154*[pH]

0.753         -182.51      -250.

TPM-5 TP=(31.474e-03)+(12.226e-
03)*[pH]*[NH3-N]

0.826         -209.01      -278.81

TPM 6 TP=0.171+(27.797e-
04)*[pH]*[COD]

0.759         -185.67      -255.47

TPM 7 TP=3.348-0.447*[pH]+(13.552e-
03)*[pH]*[NH3-N]

0.849         -218.14      -285.91

Table 1: Derived Models and Evaluation Statictics of Each Model

Model No. Evaluation Statistics 
2
aR

          AICc             PRESS       BIC             RMSE

TPM 1 0.858    -103.670            1.235        -144.830     0.167
TPM 2 0.830    -96.104              1.475        -137.260     0.183
TPM 3 0.793    -87.772              1.802        -128.930     0.202
TPM 4 0.819    -93.296              1.599        -134.450     0.189
TPM 5 0.834    -96.976              1.447        -138.130     0.181
TPM 6 0.812    -91.876              1.657        -133.030     0.192
TPM 7 0.827    -95.300              1.498        -136.460     0.185

Table 2: Predictive capacities and evaluation of different models
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