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Introduction
Drug therapy is a way to cure cancer. It is clear that, the drug 

dose is important for cancer specialists. Considering the weakness of 
immunology system in cancer affected patients, drug overdose may 
results in additional problems for their body. 

Chronic myelogenous leukemia (CML) is a kind of blood cancer 
and occurs in adults about 15 percent [1]. The age average for blood 
cancer patients ranges between 45-55 years old. The occurrence rate 
is one or three among per 100000 individuals [1]. In most CML types, 
leukemic cells are divided to an unmoral Chromosome which can't be 
found neither in non-blood white cells nor in any of body’s cells [2]. 
Consequently, a displacement will be occurred between Chromosome 
9 and 22 in such a way that Chromosome 9 will be longer than normal 
state and Chromosome 22 will be short which is called Chromosome 
Philadelphia (Ph) [2]. This Chromosome produce an unmoral protein 
namely Tyrosine kinase (Ber-Abl). This change results in conversion 
of bone marrow cells to abnormal leukemic cells [3,4]. Structural 
knowledge of Ber-Abl has led to the development of a drug, imatinib 
mesylate (known as Gleevec in the U.S. and henceforth referred to 
as imatinib), that blocks the abnormal protein, thus removing the 
proliferative advantage that it provides to cancer cells. Imatinib is 
highly specific to binding with Ber-Abl, and hence, generally has 
mild side effects [2]. One of the obtained successes in this regard was 
related to Food and Drug Administration (FDA) for detecting CML 
diseases in December, 2002 [5]. Bone marrow transplantation is a 
curative treatment option for some patients, but transplant-related 
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Abstract
Obviously, one's primary motivation in producing any mathematical model is to describe a natural or artificial 

phenomenon by means of a model equation whose behavior is as close as possible to that of the original 
phenomenon. But this is often difficult, particularly when we are dealing with nonlinear behavior in natural complex 
phenomena such as the interaction between variety of cancers and immune cells. Thus, the choice of modeling 
schemes that produce models whose dynamics resembles those of their physical counterparts is a major challenge 
in mathematical molding. Ordinary differential equations and partial differential equations are just some of the 
mathematical tools that are been used in deriving these mathematical models. In this article, we have used fractional 
differential equations for our derivation. In this derivation, a mathematical model describes the growth or terminates 
myelogenous leukemia blood cancer’s cells against naive T-cell and effective T-cell cells of body. Using this model, 
we have studied the dynamic behavior describing the transaction between bodies' effective T cell, naive T cell 
and chronic myelogenous leukemia in one side and drug in other side. The most important feature of equations 
with fractional order derivatives is their non-localization. We expect that our fractional differential equations model 
will be superior to its ordinary differential equations counterpart in facilitating understanding of the natural immune 
interactions to tumor and of the detrimental side-effects which chemotherapy may have on a patient’s immune 
system. Using this system, we will study the optimized drug dose in chronic myelogenous leukemia treatment with 
two methods namely targeted therapy and broad cytotoxic therapy.
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mortality rates can be above 40 percent [6]. Prior to the development 
of imatinib, treatments such as hydroxyuea, cytarabine, interferon-
alfa or combination of them were used to treat CML [5]. The action of 
these therapies is against broad classes of cells, and so treatment usually 
results in severe side effects. Several studies suggest that combination 
of imatinib with a broader chemotherapy has the potential to perform 
better than imatinib alone [7-10].

Recently, the models used for analyzing the cancer reaction against 
drug therapy could assist physicians in cancer treatment. Therefore, 
using optimized control methods which minimized damages to body 
can play an important role in cancer treatment. In this field, researchers 
such as Fokas et al. [11] and Adimy et al. [12] have presented CML 
models in 1991 and 2005, respectively. A mathematical model has 
also presented by Afenya and Bentil in 1998 [13] for blood cancer. 
Periodic mathematical models for CML have presented by Mackey and 
Menjouet in 2004.

In this article, the ordinary differential equation (ODE) which is 
presented by Moore and Li for brain blood cancer [14] is re-derived using 
fractional differential equation (FDE). We claim that our FDE model 
will be superior to its ODE counterpart in facilitating understanding of 
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the natural immune interactions to tumor and of the detrimental side 
effects which chemotherapy may have on a patient’s immune system. 
Summarizing the advantages of our FDE model over previous ones, 
first as Andrew Einstein described in his research [15] at Mount Sinai 
School of Medicine, some cells in various body organs have a rugged 
surface that cannot be properly understand using ordinary calculus, 
but it may be amenable to studies using fractional calculus. In addition, 
since differentiability is not required in accordance with the definition 
of FDE with order between 0 and 1, so these equations can be used in 
non-smooth domains. Furthermore, whereas in the definition of the 
classical derivative of a function at a point we use just two points in the 
neighborhood of that point in the definition of the fractional derivative 
we use all the points in a neighborhood of the point. Obviously, by 
using all of the information available in these points we obtain more 
accurate results in subsequent applications. The last property that is 
so-called non-local property will closely reflect reality and is a primary 
reason why FDE are increasingly applied to dynamical systems.

Therefore, in this article, first we will introduce a FDE model to 
present the interaction between naive T cells, effectors T cells, and 
CML cancer cells in cancer dormancy. Then, we will discuss the 
dynamical behavior of this model by identifying the fixed points and 
determining their stability characteristics. To find the solutions of 
this FDE system, we will discretize the system by using Grunwald-
Letnikov discretization method [16,17] then, we will find the results 
by using software tools such as MATLAB™. In this FDE model, by 
adding chemotherapy drug concentration to the interaction between 
naive T cells, effectors T cells, and CML cancer cells and considering 
the same three cells populations as in the first FDE, we will have our 
second model in the form of FDE. Now, similar to the way in which 
have been done in classical ODE systems, we will discuss the dynamic 
behavior of the first system and determine the stability type of the 
various feasible fixed points. One of the main goals in using fractional 
order instead of classical integer order derivative in our model is to 
obtain more accurate results in chemotherapy optimal control. For 
this optimality, similar to the targeted therapy (such as imatinib) and 
broad cytotoxic therapy (such as cytarabine) methods used by Moore 
and Li [14], we will use the processors in our FDE model. Obviously, 
in the processing of this optimality we need to solve our FDE system 
numerically. To facilitate this solution, as in above first FDE system, 
we will apply Grunwald-Letnikov method to discretize the model and 
then, use MATLAB™ software to find the results.

As we stated before, we will expect more accurate results in solving 
our FDE systems as compared to the results found by classical ODE 
methods.

Dynamical Analyses of Tumor without Treatment in 
the FDE Model

The first model that we consider here is a three cells population 
model describing the interaction between the cancer cell population 
(C), the naive T cell population (Tn) and effector T cell population (Te). 
We assume that the effector T cells are specific to CML, activated by the 
presence of CML antigen. If we suppose these three cells evolve with 
independent variable time, then we can present our model in the form 
of FDE as follows.

α = − −
+

( ),t n n n n n n
cD T s d T k T

c n
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α α α γ
η η

= + − −
+ +
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c c
	                (2)
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c
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This model is similar to the classical ODE model presented by 
Seema Nanda and Helen Moore [14]. Here, we use the same order 
derivatives α∈(0,1] for all three equations, where Tn(0), Te (0) and 
C(0) are known initial values. All of the parameter values in the above 
equations are assumed to be positive. The structure of the equations 
guarantees non-negative solutions for the state variables, (t), (t) and 
C(t) [2]. The negative terms in the above equations represent losses 
from the cell populations while the positive terms are source terms 
for the cell populations (Figure 1). The last term in the first equation 
(which has a Michaelis–Menten factor) represents the decline in Tn 
cells due to encounters with CML antigen in the lymph nodes. As the 
population of Tn cells is very small in comparison to the CML cells, this 
term takes into account the saturation effect of CML cells in the lymph 
nodes. Since some of these lost Tn cells reappear as effector T cells (Te), 
a Michaelis-Menten factor also shows up in the first term in Eq. (2). 
The model assumes Gompertz growth for CML cells as indicated by the 
growth term in Eq. (3). Also, it is assumed that encounters in the blood 
between Te cells and C cells are modeled by the law of mass action, i.e., 
the effect of these cells on each other is based on the sizes of the two cell 
populations, and there is no saturating effect in the blood circulation 
system. The lower case parameters (Sn, an, etc.) in the above equations 
are all constants, as is Cmax [2].

Here, we use the same values for the parameters as in [14] and 
appear in table 1.

As with ODE, the dynamic status of system (1-3) can be studied. 
First, we should find the fixed points of system (1-3) and then their 
stability should be analyzed. In system (1-3) we reach the problem 
parameters to 8 using standard rescaling (non-dimensionalization) 
[14]. Tn is rescaled with factor dn/Sn, Te is rescaled with factor γc/dn, 
and C is rescaled with factor γe/dn and t is rescaled with factor dn. With 
these rescaling system (1-3) yields
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Figure 1: Cell population diagram. In this figure, solid curves with arrows 
represent source terms (such as proliferation and activation), dotted curves 
without arrows represent interaction terms (such as contact between cells), 
and dashed curves with arrows represent loss of cells (such as death). Curves 
with arrows signify movement into or out of a population, while curves without 
arrows only signify interactions between populations [14].
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For finding the fixed points considering to C=0 (no cancer cell), 
Eq. (4) implies that Tn=1 and Eq. (5) implies that Te=0. There are no any 
other fixed points for C=0. So, we have just P1= (1, 0, 0). To find the 
other fixed points, for the case C≠0, from Eqs. 4-6 we have
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The third term on the right-hand side of Eq. (7) is logarithmic in 
C and hence, increases as C increases. For the factors of the fourth 
term to be zero, C must be negative (for the clinically feasible ranges 
of parameters in table 1). Thus, this fourth term is a rational function 
which decreases as C increases (when C is positive), and so there is at 
most one value of C on which makes the right-hand side of Eq. (7) to 
be zero. Therefore, the second fixed point will be =2 ( , , )n eP T T C  and for 

this we need ξ ξ ξ<8 6 7ln( ) or γ
< maxln( )c e

c n

d c
r d

.

Note that again, for biological purpose the populations of Tn, Te and 
C should not be negative. Therefore, we have at most one real fixed 
point, rather than P1 for this system.

To determine the stability analysis of the cell populations near the 
fixed points, according to the Matignon theorem [18], the fixed points 
of FDE system (4-5) is asymptotically stable if and only if the eigen 
values of related linearized system satisfied in απ>arg( ( ) / 2.spec DF  
However, since the minimum value of α ∈ (0,1)  that we chose here is 
closed to one, namely α = 95.0, the stability domain for the eigen values 
of the linearized system will be (almost) left hand side of R2 coordinates, 
i.e. the place that the real part of eigen values are negative. This means 

that we may use the same theorems as in ODE systems for the stability 
analysis of our FDE system.

Therefore, for the stability analysis of the fixed points, we need to 
determine the linearization of the system (4-6). This linearization yields 
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By substituting P1= (1, 0, 0) in this matrix we get
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By easy calculation, the eigen values of this Jacobian matrix will 
be λ1= −1, λ2= −ξ5 and λ3= −ξ6 − ξ8. It is clear that λ1, λ2 and λ3 all 
have negative (real) sign Therefore, P1 is stable. For the second fixed 
point =2P ( , , )n eT T C  (if exists), we may use a similar analysis as above. 
However, due to the long and complicated calculations, such as the one 
has done by Routh test [19], presents a kind of non-algebraic system 
that cannot be solved analytically [13].

As an alternative, we can calculate the eigen values for a wide variety 
of possible parameter values, as has done in [14], by systematically 
sampling through the ranges listed in table 1. Using this method to 
find the eigen values of the matrix (8), we may use different sampling 
intervals for ,n eT T and C . For example, using the interval (0, 5000) for 
populations  ,n eT T  and (1, 400000) for C  all of the eigen values were 
either negative real or were imaginary with all of the real parts bounded 

Parameters Description Units Estimated Values for Patient A Estimated Values for Patient B
Sn Tn source term day-1 cells/µl 0.29 0.071
dn Tn death rate day-1 0/35 0/05
de Te death rate day-1 0.40 0.012
dc C death rate day-1 0.012 0.68
kn Tn differentiation day-1 0.066 0.063
η Michaelis–Menten cells/µl 140 43
αn Te proliferation 0.39 0.56
αe Te recruitment day-1 0.65 0.53

Cmax Maximum C cells/µl 160000 190000
rc C growth day-1 0.011 0.23
γe Te loss (due to C) day-1 (cells/µl)-1 0.79 0.0077
γc C loss (due to Te) day-1 (cells/µl)-1 0.058 0.047
B1 u1 severity weight 1000 100
B2 u2 severity weight 500 50
B3 C salvage term weight 0.1 1
B4 Tn salvage term weight 100000 100000
M1 Upper u1 bound, fixed at 0.9

M2

Upper u2 bound, given by min

 

  
 
  

1 1 1, ,
n c ed d d

m1 Lower u1 bound, fixed at 0
m2 Lower u2 bound, fixed at 1

Table 1: Parameter Values.
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above by -1.000076. The large ranges of Tn, Te and C  used to calculate 
the eigen values give reasonable confidence that the eigen values have 
negative real parts for this fixed point. Hence, we assume the second 
fixed point to be asymptotically stable.

Discretization and Numerical Solution in Fractional 
Mode

As we discussed above, linear stability analysis of system (1-3) or (4-
6), around its fixed points, were similar to that of its ODE counterpart. 
However, to solve FDE system (1-3) first we need to discretize it. Among 
the several discretization methods that are available for the fractional 
derivative α

tD , we used the one that have generated by Grunwald-
Letnikov [16,17]. In this method α ( )tD x t  is approximated by 

α
α

α

→ =

 
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where, l is the step size and [t] is the integer part of t. Using this method 
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c x t

j  where tn = nl 

and α
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We may calculate α
jc  with the following recursive formula too.
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Now, Using Eq.9, system (1-3) discretize as follows.

α

η−=

 
= − −  

+ 
∑ 0

( ) ( ) ( ) ,n n
j n n j n n n n n n nj

n

c
c T s d T k T

c
	             (11)

α

η

α α γ
η−=

+

   
= + − −     +  

∑ 0
( ) ( ) ( ) ( ) ( ) ,n n n

j e n j n n n n e e n e e n e n ej
n n

c c
c T k T T d T C T n

c c

						                   (12)
α γ−=

 
= − − 

 
∑ max

0
( ) .n

j n j c n c n c n e nj
n

c
c C r C ln d C C T

c 		               (13)

By simple calculations, system (11-13) yields the following 
recursive formulas.
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The numerical results carried out by using MATLAB™ software 
for two sets of parameters given in table 1 (patients A and B) with 
initial values = = =0 0 0( ) 1510,( ) 10 and 10000.n eT T C  These results 
illustrated in figures 2-9 for both patients, whom we label A and B for 
different values of derivative order α. Each set of parameters defines an 
individual (hypothetical) patient for whom we determine an optimal 
dosing strategy. As we can see in figures 2-5, the graphs shown by dash-

points (black color) present tumor concentration, C, for patients A and 
B with derivative orders α=1 and α=0.95. If we look at these graphs 
more precisely, we claim that the ones belong to the fractional order 
derivatives (α=0.95) behaves more naturally than the one belong to 
classical order (α=1). For example, comparing the C carves in figures 
4 and 5, the one belong to classical order goes from initial value 10000 
to the minimum point 8500 (Figure 4). While, the one belong to the 
fractional order goes to the minimum point 8000 and then growth up 
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Figure 2: Numerical results for cancer cell population (C) (patient A) found 
from ODE system for classical derivative order α=1.
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Figure 3: Numerical results for cancer cell population (C) (patient A) found 
from FDE system for fractional derivative order α=0.95.
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by a natural slop. It seems that the model with fractional order is closer 
to the nature of the body defense system. However, this claim should be 
verified by more precise clinical data.

FDE Model with Drug Treatment

In this section, the ODE model presented by Moore and Li for brain 
blood cancer [14] is derived using FDE. So, if we consider the same 
system (1-3) with three cells populations along with a chemotherapy 
treatment describing the growth, death, and interactions of each cells, 
then such this system can be formulated by the means of FDE as follows.
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In this system (0), (0) and C(0) are known initial values and time 
dependent drug efficacies are incorporated using u1(t) and u2(t). Setting 
u1(t) ≡ 0 and u2(t) ≡ 1 in the Eqs. (17-19) would give the same model 
described for the dynamics of the disease without treatment. All of the 
parameter values in these equations are assumed to be positive. Again, 
the structure of the equations guarantees non negative solutions for 
the state variables, (t), (t) and C(t). The negative terms in the above 
equations represent losses from the cell populations while the positive 
terms are source terms for the cell populations [2].

The effect of the targeted drug represents by the control function 
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Figure 4: Numerical results for cancer cell population (C) (patient B) found 
from ODE system for classical derivative order α=1.
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Figure 5: Numerical results for cancer cell population (C) (patient B) found 
from FDE system for fractional derivative order α=0.95.
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Figure 6: Numerical results for naive T cell population (Tn) (patient B) found 
from ODE system for classical derivative order α=1.
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Figure 7: Numerical results for naive T cell population (Tn) (patient B) found 
from FDE system for fractional derivative order α=0.95.
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u1(t), which slows the production of cancer cells. We assume this drug 
affects only cancer cells and not the other cells, so u1(t) appears only 
in Eq. (19). The u2(t) term uses to incorporate treatment by a broad 
chemotherapy, such as cytarabine or hydroxyurea or a combination 
of such drugs, which is cytotoxic to all three-cell populations. Thus, 
u2 appears in all three state equations as a coefficient in the natural 
attrition terms. Values of u2>1 correspond to treatment with a cytotoxic 
drug [2]. In this case, cells Tn, Te and C decreases with constant factors 
dc, de and dn, respectively. But when the patient is treated by drug, 
considering−u2(t)dnTn, −u2(t)deTe and −u2(t)dc then Tn, Te and C are 
decreased more. CML cells are more decrease in patient B than A 
considering dc is higher than de and dn. In this case, we are minimizing 
the value of u1 and u2 subject to the equations of system (17-19). That 
is ∈1 2(( , ) ),u u U  
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Figure 8: Numerical results for effector T cell population (Te) (patient B) found 
from ODE system for classical derivative order α=1.
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Figure 9: Numerical results for effector T cell population (Te) (patient B) found 
from FDE system for fractional derivative order α=0.95.
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Where  = < <1 2{( ( ), ( )) . . ( ) ,    i i i iU u t u t s t m u t M u lebesque measurable
= ∈1,2,  t [0,t ]}fi .

In the objective functional, we minimize the total cancer cell 
population over the interval [0, tf] through the first term in the 
integrand, and at the final time through a salvage term B3(tf). We also 
minimize the systemic costs to the body of the two drugs u1 and u2 . As 
in [16,17], it is expected that the effects of the drugs are non-linear, and 
we choose quadratic cost terms 2 2

1 2( ) and ( )u t u t  to reflect these effects. 
The coefficients B1 and B2 are weight constants on the controls, and 
include a measure of toxicity of the drugs to the body. We note that the 
higher the weight the greater will be the toxicity. The salvage term B3(tf) 
term was not present, the controls could taper off earlier, and allow a 
rise in cancer cell count at the end of the treatment period. The salvage 
term −B4(tf) included to penalize for low values of Tn, since this affects 
the patient’s ability to fight off other diseases. The coefficients B3 and B4 
allow the salvage terms to be weighted differently from each other and 
the integral terms. (The coefficients B1, B2, B3 and B4 are all positive.) 
The lower bounds for u1 and u2 correspond to no therapy. For u1 this 
lower bound is m1=0, and for u2 the lower bound is m2=1. We suppose 
M1<1, as M1=1 would correspond to no new cancer cells. The upper 
bound M2 is greater than 1 and is determined by the parameters dc, de 

and dn [2] in such a way that is obtained by 
  =  
  

2
1 1 1min , , .
n e c

M
d d d

The following hypothesis is used for optimizing u1(t) and u2(t).

Theorem 1 (Characterization of the Optimal Control) 

Suppose an optimal control * *
1 2( , )u u  and the 

solutions of system (17-19) that minimize the function 
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given. Then there exist adjoint variables λi for i=1,2,3 and 4 that satisfy 
to the following system 
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Here, λ1(tf) = −B4, λ2(tf) = −B4 and λ3(tf) = −B4. Moreover, the 

optimal * *
1 2( , )u u  is given by

λ
 
  =  
 
  

max
3

*
1 1 1

1
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min max{ , }, ,

c

c
r Cln

Cu m M
B

λ λ+
=* 1 3

2 2 2
2

{max{ , }, }.n n cd T d C
u min m M

B
Since, the state and adjoin solutions are a priori L∞-bounded, the 

right-hand side of the state and adjoint equations become Lipschitz in 
those solutions [14]. This Lipschitz property guarantees that the solution 
of the optimality system is unique if the final time is sufficiently small. 
We can see the paper by Fister et al. [20] for a uniqueness proof using 
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Lipschitz properties. The uniqueness of the solutions of the optimality 
system implies the uniqueness of the optimal control pair.

Now for solving optimization problem (20), we should first solve 
system (21-23) with some initial values of Tn, Te and C. Here, to be 
consistence with other results in (16,17), we start with Tn=1510, Te=10 
and C=10000. Then, by finding the value * *

1 2( ( ) and ( )u t u t  and plugging 
into the system (17-19), instead of u1(t) and u2(t), we are ready to 
solve 12 this system with the same starting point Tn, Te and C as above. 
Similar discretization method that we have done for FDE system (1-3) 
can be applied here for system (17-19) to get 

α

η
−=

+

= − −∑ 20
( ) ( ) ( ) ( ) ( ),n n

n n j n n n n n n nj j
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Now by simple calculation on (24-26), we get the following 
recursive formula.
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By solving this system for some customary time, say t∈[0,1], we 
arrive at the new point Tn, Te and C. Then, this new set of values will 
serve as new starting point with initial values λ1(tf)=−B4, λ2(tf)=0 and 
λ3(tf)=−B3 for solving system (21-23), in the next iteration, to find a 
new optimal value of * *

1 2( , )u u . These iterations will continue up to the 
time t=250 (days). Indeed, using MATLAB™ to solve these two joint 
systems (27-29) and (21- 23), as the solution of optimal problem 
(20), the results are illustrated in figures 2-9 for different values of 
fractional derivative 0.90<α≤1. The results of patients A and B for α=1 
(classical ODE) are shown in figures 2, 4, 6 and 8. These results are the 
same as in reference [2]. Figure 2 compares the behavior of CML cell 
population for one control (u1) as well as two controls (u1 and u2). For 
a more aggressive case of cancer (as for patient A) the CML cell count 
is significantly lower after treatment with combination therapy as 
compared to treatment by targeted therapy alone. For a less aggressive 
case (patient B) in figure 4, it may suffice to treat with one drug alone 
as the outcome is similar for single drug therapy and combination 
therapy. However, the CML plot of patient A is shown in figure 3 for 
α=0.95, which is different from figure 2.

As we can see in figure 2, with just one treatment u1, the CML cells 
increase to their lower bound 0.8 after 250 days. While in figure 3, 
which shows the results for our FDE model, these cells increase to the 
value 0.4. With the same comparisons in figure 2, when we have both 
treatments u1 and u2 the increasing slop of CML is lower than the slop 
for this cells in figure 3. We claim that the results found in our FDE 
model is closer to the nature of the drug treatment than the results 
found by ODE contra parts. However, this claim should be verified by 
the clinical treatment data.

The CML plot of patient B is shown in figure 5 for α=0.95, which is 
again different from the plot in figure 4 for the same patient B using the 
classical ODE. In figure 6, there is not much difference in Tn evolution 
over time with or without drug therapy. Under targeted therapy, 
immune response is not compromised due to drug dosing. The Tn plot 
of patient B for fractional derivative α=0.95 is shown in figure 7, which 
is again different from the classical ODE plotted results in figure 6. 
These different are clear from the slops of the curves Tn in both figures.

Finally, we see in figure 8 for patient B, whose cancer is of a less 
aggressive nature, that Te cell response is enhanced when treated only 
with u1. Using our FDE model, the similar results for patient B plotted 
in figure 9 with fractional derivative α=0.95. As we can see in figures 
8 and 9, there is no significant different between the results whenever 
we have no treatments or both treatments u1 and u2 are on. However, 
for one drug treatment u1, in the case of classical ODE model the 
maximum of Te will be 24, while in FDE model this maximum will be 
38. After these maximum, in both cases, Te will converge to zero.

We claim that the results of figures 3, 5, 7 and 9 are more consistent 
with the nature of drug therapy. We emphasis, one reason for the 
accuracy of our FDE model is the non-local property of fractional 
derivative. This means that the next state of a system not only depends 
upon its current state but also upon its historical states starting from 
the initial time. To see this, pay attention to the summation terms in 
right hand side of system (27-29). However, as we have said above, this 
claim should be verified by more clinical treatment data.

Conclusion
In this article, we have studied a mathematical model with 

fractional order derivatives as a dynamic system for presenting the 
transaction between body immunology and drug variable. We have 
introduced a three cells population model describing the interaction 
between the CML and the naive T cells together with the effector T 
cell population, without any treatment, in the form of FDE. As we 
have seen, the local stability analyses of the fixed points for this FDE 
system were the same as its counterpart ODE system. These analyses 
were agreed with numerical results of discretized FDE system using 
Grunwald-Letnikov method. As we have expected the tumor cell 
population were increasing up to its maximum values by a positive 
initial value. Hence, a more reliable FDE system with chemotherapy 
treatment was considered. In order to find the best amount of medicine 
on which the tumor cell population, the naive T cells and the effector T 
cell population, decreasing we conducted a optimal control. The drug 
optimized dose is resulted from targeted therapy and broad cytotoxic 
therapy. We could adapt the same existence and characteristic optimal 
control theorems as in ODE systems for our FDE system. We claim, 
due to the non-local property of FDE, the results found by this system 
were more accurate as we compare to the results found by counterpart 
ODE models. Of course, this claim should be verified by more clinical 
treatment data.

Here, we should emphasis that by choosing the small values of 
α∈[0,1] , we will encounter to the larger amount of error in calculations. 
In FDE models that we have introduced here, experimentally, we have 
found that the best value of α for the best results is 0.95.
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