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Nomenclature: x - space variable, [m]; t - time; b - height of the 
earth’s crust (basement) above datum, [m]; z(t) - ocean level above 
datum, [m]; s(t) - shoreline position, [m]; u(t) - position of intersection 
between offshore sediment wedge and basement, [m]; q - prescribed 
sediment line flux [m3m-1t -1]; ν - diffusion coefficient, [m2t-1]; Greek 
letters; h - height of sediment above datum, [m]; a - slope of off-shore 
sediment wedge; β - slope of basement; g - a constant (=ab/(a -b ))

Introduction
A problem related to the shoreline movement in a sedimentary 

ocean basin due to a sediment line flux, tectonic subsidence of the 
earth’s crust, and sea level change, is a moving boundary problem with 
variable latent heat. In 2000, Swenson et al. [1] presented a mathematical 
model for movement of shoreline in a sedimentary basin (shoreline 
model) by utilizing an analogy with one-phase melting problem. Voller 
et al. [2] presented an analytical solution for a Stefan problem with 
variable latent heat (a limit case of the shoreline model) which is based 
on a similarity variable. Capart et al. [3] discussed some mathematical 
solutions for several sedimentary problems featuring semi-infinite 
alluvial channels evolving under diffusional sediment transport. 
Later, Voller et al. [4] used enthalpy method to solve a novel moving 
boundary problem related to shoreline movement in a sedimentary 
basin. In 2009, Rajeev et al. [5] presented a numerical method for a 
moving boundary problem with variable latent heat. Recently, Rajeev 
[6] successfully applied homotopy perturbation method to solve a 
Stefan problem with variable latent heat and the results are compared 
with the results of Voller et al. [2].

Exact solutions of moving boundary problems are difficult to 
obtain except for some special cases [7,8]. The difficulties arise due to 
its nonlinearity nature and unknown boundary on moving interface. 
Hence, many approximate analytical methods have been used to solve 
the moving boundary problems. The approximate analytical approach 
taken in this article is Adomian decomposition method (ADM) 
developed by Adomian [9,10]. In the literature, many researchers [11-
13] applied this method to solve various types of non-linear problems. 
Das and Rajeev [14] used variational iteration method and Adomian 
decomposition method to solve time-fractional diffusion equation with 
a moving boundary condition which is related to the diffusional release 
of a solute from a polymer matrix in which the initial loading is higher/
lower than the solubility.

The objective of this article is to find an approximate analytical 
solution of a moving boundary problem with variable latent heat 
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Abstract
In this article, an approximate analytical solution of a moving boundary problem with variable latent heat by 

Adomian decomposition method is presented. The results of sediment height and shoreline movement are compared 
with a published analytical solution and are in good agreement. A brief sensitivity analysis is also performed.
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by using Adomian decomposition method. The obtained results of 
sediment height and shoreline movement are compared with the 
existing analytical solution given by Voller et al. [2]. The dependence 
of shoreline movement on sediment line flux and constant γ is also 
discussed.

Mathematical Model
In this section, we consider a mathematical model of Voller et al. 

[2] which is a limit case of the shoreline model given by Swenson et al. 
[1]. The limit case of shoreline model involves a shoreline problem with 
a fixed line flux, a constant ocean level (z=0), no tectonic subsidence of 
the earth’s crust, and a constant sloping basement α>β. This scenario 
is a reasonable approximation for some modern continental margins. 
A schematic cross section of such a basin indicating the variables is 
revealed in figure 1 [2,6]. The governing equation and posed conditions 
are as follow:
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Where ( )η =, 0x t  is height of sediment above datum,  υ is a 
diffusion coefficient, q(t) is prescribed sediment line flux and s(t) is the 
moving interface.

The additional conditions on the moving interface are
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( ) su s s  which is latent heat term that is 

function of space and  λ is a constant.
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Solution of the Problem by ADM
We first write the equation (1) in an operator form
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Applying the inverse operator −1
xxL  on both side of the equation (6)
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Choosing the initial approximations of η( , )x t  and s(t) as given in 

[14]

η = −0 0( )
q

s x
v

=
1

2
0 0s a t

Where 
γ

 
=  
 

1
2

0

2q
a    

According to the Adomian decomposition method [9-11], 
decomposing the unknown function η( , )x t  as follows:
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According to the Adomian decomposition method [9-11], 
decomposing the unknown
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which give height of the sediment above the datum.

Now, using (9) and writing the interface condition (4) in operator 
form
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Using (10) and (11), we have
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Where An are so-called Adomian polynomials for non-linear terms 
and defined as=
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and so on. The components of = ≥( ), 1ns t n , can be completely 
determined as
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and so on. Therefore, approximate analytical solution of s(t) is given by

s (t)=s0+s1+s2+………….

Numerical Comparison and Discussion
In this section, all the numerical results for height of sediment h (x, 

t) and shoreline position s(t) are calculated for the fixed value of slope 

z = 0

Ocean

(x,l)η
x  =  s(t)

x  =  u(t)

αSediment
β

Figure 1: A schematic cross section of a basin with no tectonic subsidence and 
sea level change.
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 Figure 2: Plot of η(x, t) vs. x for q=0.5 m3m-1t-1.
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of basement (β=1.5), slope of offshore sediment (α=1.7) and diffusion 
coefficient (v=2.0m 2t -1) by using MATHEMATICA software . For 
accuracy, the approximate solutions by ADM are compared with the 
existing results of Voller et al. [2] and depicted through figures 2-5. It 
is observed that 
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where λ is the root of the following equation 
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are exact solutions to the equations (1)-(5).

Figures 2 and 3 represent the dependence of height of sediment h 
(x,t) on x at v=2.0m2t-1 for q=0.5 and q=1.5,respectively. Figures 4 and 
5 describe the movement of shoreline position at v=2.0m2t-1 for q=0.5 
and q=1.5, respectively. From the figures 2-5, it is observed that the 
approximate solutions obtained by ADM are sufficiently accurate with 
the exact results of Voller et al. [2].

It can be seen from figure 6 that for the fixed values of a=1.7, b=1.5, 
v=2.0 m2t-1, the movement of the shoreline position increases towards 

sea side as the sediment line flux q increases (q = 0.5, 1.0, 2.0). This 
result is in good agreement with the result of Rajeev et al [5].

It is observed from figure 7 that for the fixed values of a=1.7, 
b=1.5, v=2.0 m2t-1, if the value of g increases, the shoreline movement 
deceases. In this case, sediments will be deposited towards the land side 
which causes the increase in thickness of the sediments and there will 
be least shifting of the contact point towards the land side. Due to this, 
the sedimentation process becomes slower.

Conclusion
The Adomian decomposition method is successfully applied to 
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Figure 3: Plot of η(x, t) vs. x for z=1.5 m3m-1t-1.
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Figure 6: Plot of s(t) vs. t for v=2.0 m2t-1.
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Figure 7: Plot of s(t) vs. t for q=0.5 and v=20.
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Figure 4: Plot of s(t) vs. t for q=0.5 m3m-1t-1.
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find explicit expressions of height of sediment and shoreline position 
of a moving boundary problem with variable latent heat. From 
present study, it is observed that sedimentation process and shoreline 
movement become faster as the value of sediment line flux increases. 
But, sedimentation process as well as shoreline movement become 
slower, if the values of g increases. It is seen that ADM is a powerful 
and sufficiently accurate method for finding the solution of nonlinear 
problems of scientific and engineering. Moreover, this is an efficient 
and straight forward technique for solving moving boundary problems. 
The author believes that the procedure as described in the present study 
will be beneficial to researcher working in this field.
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