<

Open Access

Scientific Reports

Echi, 2:1
http://dx.doi.org/10.4172/scientificreports.607

Open Access Scientific Reports

Open Access

Approximate Solution of Second-Order Linear Differential Equation

Nadhem Echi*
Department of Mathematics, EI Manar University , Tunis 1002, Tunisia

Abstract

method.

Mathematics subject classification: 34-XX; 41-XX

This paper presents an efficient approach for determining the solution of second-order linear differential equation.
The second-order linear ordinary differential equation is first converted to a Volterra integral equation. By solving
the resulting Volterra equation by means of Taylor’s expansion, different approaches based on differentiation and
integration methods are employed to reduce the resulting integral equation to a system of linear equation for the
unknown and its derivatives the approximate solution of second-order linear differential equation is obtained. Test
example demonstrates the effectiveness of the method and gives the efficiency and high accuracy of the proposed
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Introduction

Some second-order differential equations with variable coeflicients
can be solved analytically by various methods [1]. For general cases,
one must appeal to numerical techniques or approximate approaches
for getting its solutions [2,3]. The Adomian decomposition method
for solving differential and integral equations, linear or nonlinear, has
been subject of extensive analytical and numerical studies. In particular
Adomian’s decomposition method has been proposed for solving
second-order linear differential equation.

In the present paper, we give an approach for determining the
solution of second-order linear differential equation. The second-order
linear ordinary differential equation is first converted to a Volterra
integral equation. By solving the resulting Volterra equation by means
of Taylor’s expansion, different approaches based on differentiation
and integration methods are employed to reduce the resulting integral
equation to a system of linear equation for the unknown and its
derivatives the approximate solution of second-order linear differential
equation is obtained. By studying the estimation of the error give the
efficiency and high accuracy of the proposed method [4-6].

Volterra Integrals Equations
We consider the following second-order differential equation :
(B) : y”(0)+p(1) y' (1) y(t) = g(t) 1)

with p,q and g are infinitely differential functions in open interval I
R. We fix a point a of the interval I. We have, V x € I,

:(t(i—+x1); Y(0de = y(a) (a;!x)l B (d(l +x]))lv+ J' (t 1)' Yot (2)
and
I o @ = —pav@
Y _ )it
[ 0+ I eyt 3)
a ! @+
The differential equation (E) equivalent at integral equation :
(E):V xel, [ h (O)y@n)dt=f,(x) (4)
R R
3 t—x i1 —x X i+1
h; (1) = D P p)+ 1) (g()=p'(1) (5)

t— x)i+l

(i+1)!

(a— )

fi(x)=-y(a)—— g(n)dt

(6)

( x)i+1 x(
+'(@)+ plapy@)= o

Linear System and Approximate Solution

Next following the method suggested in [1,6]. We fix one positive
integer n > 1. We have:

v = Zy(“( =9

where R () denotes integral remainder

(t sy
R,.()= J oY

In particular, if the desired solution y(t) is a polynomial of degree
equal to or less than n-1, then Rn,x(t):()-

x) +R, (1) )

Y (s)ds (8)

We put for all i and j positive integer > 1:

x)!

b=, (r)—l)!dt ©

For an integer i > 1, the function y is solution of (E) if and only if
we have:

Db )y () = fi(x) (10)
=
We consider the matrix:
B, (x)=(b(x)),=1L,....n (11)

and the column

*Corresponding author: Nadhem Echi, Department of Mathematics, EI Manar
University, Tunis 1002, Tunisia, E-mail: nadhemechi_fsg@yahoo.fr

Received October 02, 2012; Published February 12, 2013

Citation: Echi N (2013) Approximate Solution of Second-Order Linear Differential
Equation. 2: 607 doi:10.4172/scientificreports.607

Copyright: © 2013 Echi N. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Volume 2 °©

Issue 1 * 2013


http://dx.doi.org/10.4172/scientificreports.607

Citation: Echi N (2013) Approximate Solution of Second-Order Linear Differential Equation. 2: 607 doi:10.4172/scientificreports.607

Page 2 of 5
3(x) Thus, for all k = 0,...,+ j-2, we have:
£ o B (@)= 0 ey
F(x)= Y, (x) = . (12) So we have:
o : by (@)= (1) €L, (22)
n X n— - Lo .

Y () B (a) = (~1) ¢/, p(a) (23)
For all positive integer n > 2, the equation (E) equivalent at The explore Taylor’s approximations, in a of bl.j.”"*” at order n-2,

Vxel B ()Y (x)=F (x) (13) give that of b, at order n+i+j-1 following :

Application of Cramer’s rule to the resulting system yields an
approximate solution of equation (1). It is also noted that not only y(x)
but also y(i) (x) (1 < i < n-1) are determined via solving the resulting
system. The solution y(x) can be approximately obtained to be:

_ det(B,(x))
2= Get(8, (o) o
where
fl(x) b, (%) bm (x)
Sr(x) by (x) b,, (%)
B(x)=| - ' ' (15)
S (x) b,,(x) b,,(x)
Error Analysis

Approximation of B,

We are going to use the explore Taylor’s approximations, in a of b,
atorder i+ j+ n-1.Let: i> 1and j> 1 Forall k = 0,....,i + j-2 , we have:

i+j—k-2
H® = (1Y [o (x-1)
P = DT R By

. (x— [)W‘—k—l

i+ -k =1

p()

=t
ey (p'(@®) +q(1)]dt

(16)

In particular, we have :

BT (x) = (~)VIC L (x—a)=Cl) [ (x=0)p(ydr

¢t [ o+ gy

+

(17)
Furthermore, we have:

(i+j— _ i+) v
B (x) = (-1)T /!

i+j-2
+ (L =P (1) + g(1))de (18)

By () = (<) CLL () + (D CL [ (p'(0) + (o)
= (D)ICL =L P (D) €L pa) + () ¢ [ gy
(19)
By () = (VI = €L 1P () + Clg(0)] (20)

+(ei | “p()dt

i+j-1

bij(x):b(n)ij(x)+0((x-a)"“*j'1) (24)
With i+j-1 i+j
By () = = —— =) - pla)—4= ) (25)

G+ D= -1

Fori>1andj2> 1, weput:

@i+ jil(j - 1)!

- _ (a _ X)H‘FI -

b0 =G @ (26)

We have:

b, (x) = b, (x)+o((x—a)") (27)
with: 1 ( )

~ p a

b .. = ——  _B%

s () -1 G+ i 2

ATt ) AL Lo e

i+ )i+ HEC,, " (-1
1 Lol g @
" i(i+l)(i+j+1);[Cl.’+‘f+H] (-1 (x-a)
(28)

So the approximation in a, at order n, of 5, use the approximation
at order n-1 of p and the approximation at order n-2 of q.

We put: B,(x) = (b, (x)), .., and B, (x) = (B, (X)), -1,

Let D (x) the diagonal matrix having (‘Eii);))l;] as i-th diagonal
coefficient. For all : i=1,...,n.
1 0 N 0
0 (a-=x) O
DM=|. . .. 0 (29)
n-1
0 (a—x)
(n-1)
We have :
B,(x)=(x~a)D,(x)B,(x)D, (x) (30)
B,y (x) = (x= @)D, (x)B,,, (x)D, (x) (31)
B,(x)= B, (1) =o((x~a)") (32)
Approximation of F,
We have:
. _ M , (a _x)i+1 N (t _x)i+l
S = @) = @)+ playa)= +[ G S0

(33)

We are going to use the explore Taylor’s approximations, in a of f,
(x) at order i+n. For k < i+1, we have :

Volume 2 * Issue 1 * 2013


http://dx.doi.org/10.4172/scientificreports.607

Citation: Echi N (2013) Approximate Solution of Second-Order Linear Differential Equation. 2: 607 doi:10.4172/scientificreports.607

Page 3 of 5

(t_x)z+l (t_x)iﬂfk
d 1 - di
7 j Sy 0= [ g & (34)
and
f;(i-v—z) — (_1)i+1g(x) (35)
Thus we have:
F0) =1, (9+o((x-a)") (36)
with
Fu )= =30 =5 [+ p@(a)]
(a-x)"" ()" G 1 L ()
Gl s w9 (37)
We put:
ﬁn)l(x)
f(n)z(x)
F,x)= (38)
f(n)n(x)
We have:
F,(x) = (x—a)D,(x)F,, (x) (39)
with:
f(n)l(x)
fhzn)l(x)
By =) T (40)
f:n)n(x)
For i=1...,n, we have:
T =L@+ —[ @+ playans—L 3 L 8@
7 T TR NG ) O (k-2
(41)

The construction of F(n) uses p(a), the approximate of g in a at
order n-2. as well as the initial condition of y(a) and y’(a). We have :

F,(x) = (x=a)D, (N[ F,, (x) +o((x—a)")] (42)
Lemma: 1

1. The matrix (‘*‘J‘lj has positive determinant.

2. We have : EJ e

det !

i+j-1 ij=l,...
det(.lh]

YT it

Proof: We provide C[X] by scalar product: (v,w) = J:llv(x)m)dx
1. Let Vi Vppees

N2k +1

L= (43)

the orthogonal basis given by:

v, = 7 L,
k
with 7, = 1 4 x> —1)* Legendre polynomial of degree k.
2F k! dxt

(x+1)f
We put: ¢, =
k 2,(\/5

_ 1
ind dent syst oo is B,(a)= .
independent system (eo EVH)IS  (a) [H—j—l]”l )

. The Gram Schmidt matrix of linearly

In particular we have : det(B, (a)) > 0.

2. Weput: 7, =[%ji,j =1..n. For: j=1,...,n-1
l+j

<e0,ej> <e0,e,7 >

<e e. > <e

n-1>€;

e >

n—1>€j-1

where ¢ is the j-th vector of the canonical basis.

nl
—(e,,v,)v, = Z,:ox

e; orthogonal projection of e on C_ [X].
-1, (e.e)=(e.P) =" x

ese;).

Let P=e,

Wehave: Vk=0,...,n

Thus, n-th column of (V) equal:

(€€y) (€.€;)
' n-1
X, DK
=1
(e, e | 7 | (e e

Thus: det(V,) = (=1)""x, det(B, (a)). We have :
1
P(=1)=—(e,,v,)v,(=1) =%, —=
"2
n-th order vector entry of e equal n-th order vector entry of

(e,,v,)v,.One arrives at :

1 n—th order vector entry of e, 1)
X = — V(=
D) n—th order vector entry of v, "

_n- th order vector entry of e,
- DG o)

n —th order vector entry of Q

such as 0= (x* =1)". Taylor’s expansion : Q(-1)=(-2)n. Thus :

jdx”
1 L1
xoﬁ_ (2;/)—,( 2)" =(-)" ﬁczu
n'n! '
Thus:

det(_ 1. 1]
PRI e .
ot = G,

det[#j
1+ ij=n

We have : B,,,(a) = B, (a) = (

i+j-1 ji j=l..n ‘

As, det(f?(n) (a)) # 0, thus taking x close of g, det(g(n) (x))#0.
Hence, taking x close of a; x # a B(”) (x) # 0. Similarly, defines to be :
Y, (0=B ()" F (x) (44)
We put :
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y o (x) By looking at the first constituent and allowing that
(n)0
< 1 )
Yo (x) B, (a)= [i pap 1,,:1,___,,1) we obtain:
Yo ()= ) NI '
1+n 2 n
Vi (X) 11 1
2+n 3 1+n
From (38) and (41) we have: )
By (¥)D, (0%, (x) = F (x) (46) Lo L
2n  1+n 2n
The first element of D (x) Y(n)(x) isy,,, just what we look for. 3 (a) L
Y(X) = Yoo () = (x=a)"(=1)" +o((x—a)")
Theorem: n! ! 1
1. Taking k=0,...,n-1, we have : | f 'll
Voo ()9 (x) = 0((x-a)"*) (47) 2 3 1+n
2. We have :
1 y"(a) " . :
V) = Vi )+ —==——=(x—a)" +o((x ~a)") (48)
c, 11 i
We have: w len n
F(x) =F, (x) + (x-a)D,(x) o((x-a)")
Taking x close of a, x#a, we have : Thus:
B (%)Y (x) =B, (0)Y, ()Y (x)+ (x-a)D,(x)o((x-a)") 1 ™
_ 1y . ;
one arrives at, V(X)) = Yo (%) = cr . (x—a)" +o((x-a)")
~ ~ 2n *
B, (x)D,(x)Y, =B D, (x)Y,
s (DD, (T, () = B, (DD, (), () Example: We consider the following second-order differential
b equation with variable coefficients
I+n » >
1 y'(x) - 2y (x)y(x)=0 (49)
) under the initial condition
ya) e e 2Fn oy
+ - (x—a)"(-1) +o((x—a)") $(0) = 0,°(0) = 1 (50)
. This equation has an exact solution
1 y(x) = tan(x) (51)
2n Using the present method, we can evaluate its approximate
Thus : solution. For example, when n=3 one can find the corresponding third-
B (9D, (¥)Y, (1) =D, (x)Y. ()] order approximations zzs: 6 4
162x" —8904x” + 70560x
1 y3(x) = 5 5 . - (52)
— —19x" +1734x" —32760x" + 70560x
I+n
1 Of course, when taking a lager n, it is expected that more accurate
" approximate results can be given. In order to show the variation of the
_V(@ (x—a)' (-1)"" 2+n +o((x—a)") accuracy of approximations (Table 1).
n! It indicates that the present method gives a very fast convergence,
: even for x near some unbounded points.
1 Conclusions
Furth ] 2n This paper proposes a effective method for determining the
urthermore: 1 (a) approximate solution of second-order differential equation with
D, ()Y, (x) = D, (0, (x) = n' constant and varying coefficients. The second-order differential
. | equations to transformed a Volterra integral equation. By using
I+n ; . .
X Exact solution y(x) Approximate solution y,(x)
1 0.1 0.1003347 0.1003394
u nel Bl 2+n u 0.5 0.5463025 0.5469448
(x—a)"(-1)"" B, (a) +o((x—a)") 1 1.5574077 1.5644186
1.57 1:2557656%10° 1:2536283 x10°
1.57078 6:1249009 x10* 6:0755230 x10*
i Table 1: Indicates that the present method gives a very fast convergence, even for
2n X near some unbounded points.
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Taylor’s expansion of the unknown function, the resulting Volterra
equation can be approximately solved [7]. Based on these results, an
approximation of second-order differential equations can be directly
constructed. Test example is given, and obtained results turn out
that the present method is efficient, and simple. Moreover, it can be
implemented by symbolic computation at any personal computer.
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