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Introduction
Turbulent flow combustion within porous media has many 

applications in different industries and systems, such as burners, 
internal combustion engines and etc. This media owing to high density 
power, high dynamics power, lower pollutants emission and high 
burning speed has more application compare to other conventional 
combustion Media. In addition, to study the free flame flows, the 
advantages of having a combustion process inside an inert porous 
matrix are today well recognized [1-4]. A variety of applications 
of efficient radiant porous burners can be encountered in power 
and process industries where, it requires advanced and adequate 
mathematical tools in order to have a reliable design and analysis of 
such efficient engineering equipment.

Many researchers have worked in this field [5-15] and in the 
majority of their publications on combustion in porous media, the 
flow has been considered to remain in laminar regime. However, 
due to the importance of turbulence reactive flows in porous media, 
authors in this work developing models for turbulent flow with and 
without combustion. Non-Reactive turbulence flow in porous media 
has been studied by several researchers [16-18]. A concept called 
double-decomposition was proposed [16,17], in which variables 
were decomposed simultaneously in time and space. Also, intra-pore 
turbulence was accounted for all transport equations but only non-
reactive flow has been investigated. Lim and Matthews [11] simulated 
the turbulence flow combustion with using k-ε model. Sahraei and 
Kaviani [13] have contributed a direct numerical simulation of 
turbulence flow in a combustion system. Delmos [17] studied the 
turbulence combustion in a porous burner in one-dimensional. He 
used a global reaction for calculation of heat release from combustion 
of fuel and used standard k-ε turbulence model in his work.

In this study, combustion of turbulence flow of natural gas and 
air in a porous burner which has scattering, emitting and absorbing 
properties has been studied and a detailed chemical kinetic mechanism 
has been used for combustion modeling. Also, the radiation heat 
flux from solid of porous media matrix to gas phase flow has been 
considered and is calculated with using the discrete ordinate method.

The main hypothesizes of this simulation are as follows:

1. The flow is turbulent and steady. 
2. The burner is single layer. 
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results and experimental data show generally to have a good agreement.
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3. The fluid flow is supposed as mixture of natural gas and air in the 
inlet with specified equivalence ration

4. The flow is supposed 1D. 
5. The porous media is supposed homogeny. 
6. The porous media is not in thermal equilibrium with gas flow. 
7. The porous media is chemical inert. 
8. Boundary conditions and the geometry considered here, 

adjustable with the experimental setup of Chaffin et al. [18].

Computational Domain 
Figure 1 showing the computational domain considered here. The 

fuel and air enters to porous media as a premixed mixture at specified 
velocity and equivalence ratio. The total length considered for burner 
is 10.16 cm and is adjusted with experimental setup.

The porous media matrix properties are shown in tables 1.

Model Formulation
Governing equations of reactive fluid flow and combustion are 

continuity, momentum, species conservation and energy. These are 
one-dimensional, steady and turbulence flow and are obtained with 

Figure 1: Computational Domain.
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Due to considering the non-equilibrium of porous material matrix 
(solid) with gas flow, the temperature of solid is different from gas flow. 
The energy equation of gas phase is
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The energy equation of solid phase is
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The rate of species production in the combustion process can be 
found from mass conservation of species as below
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Boundary Conditions

In this work, we used the boundary conditions at inlet and outlet for 
governing equations mentioned above. At inlet, specified inlet velocity, 
the energy balance, the energy balance with considering the radiation 
and the specified concentrations have been used for momentum, gas 
phase energy, solid phase energy and species equations respectively. 
At outlet, the constant temperature, balance energy with considering 
the radiation effect and the constant concentration of combustion 
products have been used. For turbulence kinetic energy and dissipation 
the following values have been used:
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The boundary conditions used are summarized in table 2.

Results and Discussions
The governing equations mentioned above have been solved with 

implementation of finite difference method in one dimension with 
boundary conditions summarized in table 2. The calculation is started 

using the space-time averaging as shown below.

Figure 2 showing, the symbols and method used for spaces-time 
averaging. The governing obtained equations are:

Continuity:
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The superficial velocity is defined as below:

φ= ×Du u
For modeling of turbulence, the macroscopic K-ε model has been 

used as
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The turbulence viscosity and Reynolds stresses are obtained with 

using the Bossinque approximation as
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Table 1: Porous media properties.

Figure 2: Control Volume for averaging.
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with coarse grids and obtained solution is used as initial guess to main 
calculation with fined grids. The prepared computational algorithm is 
continued until the solution is converged. The flowchart of solution 
procedure is shown in figure 3.

The variation of gas temperature throughout the burner axial 
shown in figure 4. The onset of combustion location shows, the 
preliminary zone of burner plays as preheat zone and the chemical 
reactions started after this zone. The independency of solution from 
number of generated nodes has been shown in this figure also. Figure 5 
shows the temperature variation for two different inlet velocities. These 
velocities are in the range of turbulence flow regime. With increasing 
velocity, onset of combustion delays in the axial of burner and this is 
due to increasing the inlet momentum of gas flow.

The variation of axial temperature at different equivalence ratios is 
shown in figure 6. The results show, the equivalence ratio of mixture for 
onset of combustion in the burner has a limit value and it is about 0.6 
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Table 2: Used boundary conditions.

Figure 3: Flowchart of numerical solution.

Figure 4: Axial Temperature Variation in the burner.

Figure 5: Temperature Variation at different inlet velocities.

Figure 7: Velocity Profile throughout the burner.

Figure 6: Temperature Variation at different equivalence ratios.

Figure 8: Temperature Variation at different velocities.
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for the burner specified here. Under this value the combustion did not 
started and has not been stabilized the flame [19]. Using the laminar 
regime equations causes some errors in the results. The comparing 
of results is shown in figure 7. Figure 7 shows the velocity variation 
throughout the burner. The inlet velocity is same for two cases. Figure 
8 shows temperature variation at different velocity and regimes. The 
results show onset of combustion in the turbulence mode delays in 
axial of the burner but its maximum value is higher at turbulence mode.

Figure 9 showing the variation of Reynolds number of flow 
throughout burner. With considering turbulence flow regime range, 
decreasing of inlet velocity causes, the flow regime change from 
turbulence to laminar in some places of burner and thus, the predicted 
results using the laminar equations have errors which it can be seen in 
figure 10.

Figure 10 showing the variation of NO which has high dependency 
on temperature versus the equivalence ratio. Because the used velocity 
is in the range of turbulence regime, the results for laminar flow regime 
have high deviation from experimental data. Also the results, showing 
the derived governing equations for turbulence regime in the porous 
burner in this research have acceptable agreement with experimental 
data and can be used in other works [20].

Figure 11 showing the variation of NO at different equivalence ratios 
throughout the burner. Increasing of equivalence ratio will increase the 
NO, and it takes maximum value at the stoichiometric point condition 
approximately. Onset of combustion and thus increasing the NO mole 
fraction after preheat zone of burner can be seen from this figure. The 
variation of carbon mono-oxide with equivalence ratio is shown in 
figure 12. With increasing the equivalence ratio, the CO mole fraction 
increases and this is due to increasing of fuel mass. Also the validation 

of simulation results with experimental data can be seen from this 
figure.

The CO mole fraction variation throughout the burner at different 
equivalence ratios is shown in figure 13. Increasing the equivalence 
ratio, results the increasing of CO mole fraction, but its values freezed 
at the end of burner.
Conclusion

In this study a numerical simulation of turbulent reactive flow 
in a porous burner is carried out. The fuel considered here is natural 
gas and a detailed chemical kinetic scheme is used for combustion 
modeling. The radiation heat transfer rate from solid phase to gas flow 
is considered. The simulation of turbulent is carried out for laminar 
regime and results are showing that using laminar regime equations 
in the burner have more deviation from experimental results. The 
simulated results at the turbulence regime flow are showing to have a 
good agreement with experimental values.

Figure 9: Reynolds number variation throughout burner.

Figure 10: NO Variation versus equivalence ratios.

Figure 11: NO Variation throughout burner at different equivalence ratios.

Figure 12: CO Variation versus equivalence ratio.

Figure 13: CO Variation throughout burner at different equivalence ratios.
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