Simple and Efficient Synthesis of Novel Fused Bicyclic Heterocycles Pyrimido-Thiazine and Their Derivatives

Sirsat Shirraj B and Vartale Sambhaji P*

P.G. Research centre, Department of Chemistry, Yeshwant Mahavidyalaya, Nanded 431602 (MS), India

Abstract

We report simple and efficient synthesis of novel fused bicyclic heterocyclic compounds 3 using bis (methylthio) methylene malononitrile 1 and thiourea 2 with potassium carbonate in DMF at reflux condition. The molar ratios of these substrates are 2:1 for the preparation of 2,6-dihydro-2,6-diimino-4,8-bis(methylthio) pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile. This newly synthesized pyrimido thiazine acts as bis-electrophilic species reacting with various nucleophiles yielding 2,6-dihydro-2,6-diimino-4,8-(disubstituted)-pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile in good yields.

Keywords: Thiourea; Bis (methylthio) methylene malononitrile; Bis-electrophilic species; Various nucleophiles

Introduction

In recent years, the synthesis of fused bicyclic heterocyclic compounds possessing pyrimido-thiazine central core has been the focus of great interest. This type of compounds shows various biological properties such as antibacterial, antiallergic, anti-inflammatory, antivirus, phosphodiesterase inhibition and antiparkinsonism [1-6], many workers have synthesized different 1, 3-thiazines [7,8]. Thiazines are very useful units in the fields of medicinal and pharmaceutical chemistry and have been reported to exhibit a variety of biological activities [9,10]. Recently, substituted thiazine are prepared using α, β- unsaturated carbonyl system and that are very versatile substrates for the evolution of various reactions [11] and physiologically active compounds [12]. The reaction of thiourea with α,β- unsaturated system (Michael acceptor) results in 1,3 thiazine [13,14]. It has been well focused that the presence of pyrimido-thiazine with various chemically reactive moieties is an important structural feature and also substituted imino group present in thiazine ring, and the resulting molecule would exhibit promising biological activities in continuation of our work [15-21]. In the present study, we synthesize pyrimido-thiazine containing more reactive functional groups using thiourea and bis methylthio methylene malononitrile which is used for further cyclisation and derivatization. The synthesized compounds act as bis-electrophilic species reacting with various nucleophiles such as substituted aromatic amines, aromatic phenol, various active methylene compound and alicyclic heterocyclic compound construct 2,6-dihydro-2,6-diimino-4,8-bis (methylthio)pyrimido[2,1-b][1,3]thiazine-3,7-di carbonitrile in good yields.

Experimental Section

Melting points were determined by open capillary tubes and were uncorrected. The silica gel F254 plates were used for thin layer chromatography (TLC) in which the spots were examined under UV light and then developed by an iodine vapor. Column chromatography was performed with silica gel (BDH 100-200 mesh). Solvents were purified according to standard procedures. The spectra were recorded with the following instruments: IR: Perkin-Elmer RX1 FT-IR spectrophotometer; NMR: Varian Gemini 200 MHz (1H) and 50 MHz (13C) spectrometer; ESIMS: VG-Autospec micromass. Elemental analysis was performed on a Heraeus CHN-O rapid analyzer.
solid product was filtered, washed with water and recrystallized using ethyl alcohol.

2,6-dihydro-2,6-diimino-4,8-bis(phenylamino) pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (4a)

Colourless solid (yield 65%). Mp: 155-156°C. IR (KBr): 3450 (s, NH), 2220 (-CN) cm\(^{-1}\). H NMR (CDCl\(_3\)) \(\delta\) 8.0 (s, 2H, Ar-H), 7.6 (s, 2H, Ar-H), 7.4-7.5 (s, 1H, -NH), 7.3-7.4 (s, 1H, -NH), 7.25-7.35 (d, 2H, Ar-H). MS m/z: 680 (M\(^+\), 100%). Found: C-51.60, H-4.30, N-22.90, S-6.4. 

4,8-bis(4-bromophenylamino)-2,6-dihydro-2,6-diimino(pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (4b)

Brown solid (yield 60%). Mp: 145-152°C. IR (KBr): 3412 (s, NH), 2220 (-CN) cm\(^{-1}\). H NMR (CDCl\(_3\)) \(\delta\) 9.34 (s, 1H, -NH), 9.0 (s, 1H, -NH), 8.7-8.9 (s, 1H, -NH), 7.4-7.6 (d, 2H, Ar-H). MS m/z: 680 (M\(^+\), 100%). Found: C-51.70, H-4.30, N-22.90, S-6.4.

4,8-bis(4-methoxyphenylamino)-2,6-dihydro-2,6-diimino(pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (4c)

White solid (yield 65%). Mp: 150-152°C. IR (KBr): 3435 (s, NH), 2240 (-CN) cm\(^{-1}\). H NMR (CDCl\(_3\)) \(\delta\) 8.5 (s, 2H, -NH-Ar), 7.65-7.9 (m, 6H, Ar-H), 3.75 (s, 6H, -OCH\(_3\)). MS m/z: 596 (M\(^+\), 20%). Found: C-58.50, H-3.50, N-17.80, S-6.4.

4,8-bis(3-nitrophenoxy)-2,6-dihydro-2,6-diimino(pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (4d)

Brown solid (yield 65%). Mp: 145-148°C. IR (KBr): 3420 (s, NH), 2245 (-CN) cm\(^{-1}\). H NMR (CDCl\(_3\)) \(\delta\) 9.45 (s, 1H, -NH), 8.8 (s, 1H, -NH), 7.8-8 (m, 6H, Ar-H), 4.0 (s, 6H, -OCH\(_3\)). MS m/z: 511 (M\(^+\), 100%). Found: C-58.50, H-3.50, N-17.80, S-6.4.

4,8-bis(3-nitrophenoxy)-2,6-dihydro-2,6-diimino(pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (4e)

Yellow solid (yield 70%). Mp: 180-183°C. IR (KBr): 3410 (s, NH), 2245 (-CN) cm\(^{-1}\). H NMR (CDCl\(_3\)) \(\delta\) 9.45 (s, 1H, -NH), 8.8 (s, 1H, -NH), 7.8-8 (m, 6H, Ar-H), 4.0 (s, 6H, -OCH\(_3\)). MS m/z: 511 (M\(^+\), 100%). Found: C-58.50, H-3.50, N-17.80, S-6.4.

Result and Discussion

The fused heterocyclic compounds 2,6-dihydro-2,6-diimino-4,8-diis(b-methylthio) pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (3) was prepared from bis (methylthio) methylene malononitrile 1 and thiourea 2 with catalytic amount of potassium bicarbonate (1 mmol) in DMF at reflux condition and the molar ratios of these substrates are 2:1 (Scheme 1).

Proposed pathway for formation of 2,6-dihydro-2,6-diimino-4,8-bis(methylthio) pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (Scheme 2).

The compound 3 posses a replaceable active methylthio group (-SCH\(_3\)) at 4, 8- position which is activated by nitrogen atom and electron withdrawing cyano group. Compound 3 reacted with selected various nucleophiles like substituted aryl amines hetryl and thiourea 2 with catalytic amount of potassium bicarbonate (1 mmol) in DMF at reflux condition and the molar ratios of these substrates are 2:1 (Scheme 1).

Proposed pathway for formation of 2,6-dihydro-2,6-diimino-4,8-bis(methylthio) pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (Scheme 2).

The compound 3 posses a replaceable active methylthio group (-SCH\(_3\)) at 4, 8- position which is activated by nitrogen atom and electron withdrawing cyano group. Compound 3 reacted with selected various nucleophiles like substituted aryl amines hetryl and thiourea 2 with catalytic amount of potassium bicarbonate (1 mmol) in DMF at reflux condition and the molar ratios of these substrates are 2:1 (Scheme 1).

Proposed pathway for formation of 2,6-dihydro-2,6-diimino-4,8-bis(methylthio) pyrimido[2,1-b][1,3]thiazine-3,7-dicarbonitrile (Scheme 2).

The compound 3 posses a replaceable active methylthio group (-SCH\(_3\)) at 4, 8- position which is activated by nitrogen atom and electron withdrawing cyano group. Compound 3 reacted with selected various nucleophiles like substituted aryl amines hetryl and thiourea 2 with catalytic amount of potassium bicarbonate (1 mmol) in DMF at reflux condition and the molar ratios of these substrates are 2:1 (Scheme 1).