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To date, most of cell biology studies were performed on cell clusters, 
considering that all cells belonging to a peculiar cell type were identical. 
The renewed interest in cell-to-cell variation and its characterization 
enriched the concept of cellular heterogeneity, so far use, especially 
referred to cancer phenotypization [1]. 

Thanks to the significant technological improvements, actually 
linked to the miniaturization of device (that give rise to the “Lab-On-
Chip Era”) and to an improved detection sensitivity of methods, an 
increasingly number of studies on single cells shows that individual 
cells within the same isogenic population may differ dramatically, 
and these differences drive important consequences for the health and 
cellular function of the entire population [2].

Methodological approaches evaluating only parameters, resulting 
from the averages of large population of cells, fail to detect and 
consider cells produced in small number, and attempt to uniform 
the heterogeneity, obscuring crucial differences. On the contrary, the 
development of new technologies to investigate biological systems at 
single-cell level is characterized by enhanced measurement parameters 
(selectivity, sensitivity, spatiotemporal resolution, scalability, and/
or non-destructive methods that preserve the integrity of the cell, 
allowing the analyzing of intracellular bio-molecular dynamics). These 
new tools are also able to perform a simultaneous measurement of 
multiple molecular components (like genes, proteins and metabolites), 
within a single cell [3]. 

For these reasons, genomics, proteomics and metabolomics 
experimental approaches shifted at single-cell level could be considered 
of primary importance to define the normal cell-to-cell variation, 
and correlate the variation with changes in biological function 
and disease processes, to uncover crucial intra- and extra-cellular 
pathways (also, in response to microenvironmental stimuli) related 
to a peculiar genome polymorphism, to improve the detection and 
molecular characterization of rare cells (e.g. stem cells, cancer stem 
cells, and tumor initiating cells), and finally to identify personalized 
pharmacological treatments.

Moreover in the last years, there was an increasing interest in 
investigating cellular heterogeneity involved in different fields, from 
cancer to stem cell research, from autoimmune disease to neuronal 
biology, through the outstanding use of single-cell analyses with 
omic approaches, resulting in a more efficient discrimination among 
responders and non-responders to several therapeutic approaches.

The introduction of modern genomics increased the number of 
whole genome expression profiles, discovered in different organisms 
(bacteria, plants, humans and others), with the final goal to determine 
the exact type and number of genes and proteins expressed in a 
different tissue or organ, the expression level and regulative network 
of these genes and proteins, both in physiological and in pathological 
conditions. 

Nevertheless, only with the advent of microfluidic systems and 
miniaturized devices, nearer to the effective dimension of cells and 
suitable to perform analyses even in very small volume sample, it 
has been possible to discern different gene expression and protein 

phenotype, in order to distinguish crucial associated functions in cell 
populations that seem “apparently” anatomically and morphologically 
identical [4].

At this regard, it has been recently demonstrated for the first time, 
the possibility to distinguish the pluripotential and differentiated 
state of among seemingly homogenous cell populations, by resolving 
stem cell heterogeneity with single-cell gene expression profiles. This 
discovery is relevant particularly, when we think about the applicability 
of stem cell in regenerative medicine, as an intervention strategy 
enabling stem cells to get in the damaged tissue and repopulate/
differentiate in a tissue-committed cell-type [5]. Nevertheless, it 
has been yet to be clarified the exact mechanism by which stem cells 
interact with diseased tissues, and how microenvironments influence 
their activity [6]. 

In the field of cancer research, the exact detection and evaluation 
of the single cell composing the heterogeneous mass set the basis 
for the comprehension of the mechanisms underlying the initiation, 
progression and metastatization of different type of cancer, such as for 
breast cancer [7]. 

At this regard, it is well known that molecular heterogeneity of breast 
cancer [8], is mainly referred to the different cell-type composition of 
the tumor and of the mammary microenvironment (breast epithelial 
stem cells, transit amplifying cells, committed differentiated cells) [9]. 
The further and more relevant difference in cell composition of human 
cancer is the different genomic, transcriptomic, epigenomic, proteomic 
and metabolomic profiles within the apparently identical single cell 
type, in order to not only clarify the different steps involved in breast 
cancer evolution, but also to understand drug therapy resistance and 
cancer reoccurrence [10,11]. 

Regarding the cancer stem routes, it has been recently emerged as 
an international stem-cell debate underlying the two current thoughts 
on the possible origin of cancer cells (“clonal tumour evolution” versus 
“stemming tumour evolution”) [12], high lightening that single-cell 
approaches may pave the way for a complete and innovative knowledge 
of molecular portraits. 

Furthermore, not only the cell-type is the one that gives rise to the 
tumour mass (like cancer stem cells), but also the circulating tumour 
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cells may play a crucial role in the progression of cancer and in the drug 
therapy response; so their detection at single-cell level may represent 
a powerful tool to predict an increased risk for disease relapse and 
establish the correct prognosis. In this respect, the analyses of different 
single-cell omics could find crucial involvement [13].

The indispensable step after the isolation of a single cancer cell 
(stem, not stem, circulating or resident cells), and after its whole-
genome, whole-transcriptome and whole-proteome characterization is 
the study of a pharmacological approach targeted to effectively treat 
the cancer cell, by killing or reprogramming the pathological feature(s). 
This preliminary condition is necessary, but not sufficient to develop 
pharmacogenomic and pharmacoproteomic strategies for a more 
efficient personalized medicine, as it must deal with the reproducibility 
of the response to treatment, and both with the effects induced in 
the other cancer and no-cancer cells, and with the entire organism 
networks. 

Only with an adequate evaluation of the complexity of cancer 
genome and with an advanced and multidisciplinary study of single 
cancer cell as unique and heterogeneous entity, pharmacogenomics 
could be translated into clinic, in order to improve management of 
patients [14,15].

Another goal useful to translate genomic data (to date characterized 
by extremely large databases of disease-associated mutations) in new 
pharmacogenomic-based therapeutics, is also the comprehension 
of which mutations/alterations in pathological cells are “driving the 
diseased condition” [16].

Furthermore, the single-cell analysis has been also applied to 
neuroscience, in order to understand if the genomic heterogeneity 
among single-neuron cells is involved in their functional diversity, and 
how this contributes to different neurological and psychiatric disorders 
[17]. 

Also, single-cell transcriptome has been employed to characterize 
brain cell-to-cell variations in order to reveal, through the studies of 
gene splicing isoforms, novel regulatory mechanisms underlying the 
phenotypic differences between genetically identical cells [18,19]. 

As a complement of genomic analyses, recent proteomic studies 
at single-cell level, shedding lights on protein structure, function, 
subcellular localization, networks and modification in physio-
pathiological conditions [20]. This offer a powerful tool for discovery 
of innovative and more effective drugs that could be used for 
individualized therapy, both in the treatment of cancer [7], also by 
studying single-rare cell response to treatment [21], brain disorders 
[22], immune cells and related disorders [23].

The increasing number of cell biology studies at the single-cell 
level promoted the discovery of the existence of millions of different 
cell types, both in the prokaryotic and in the eukaryotic spheres. The 
conventional morphological and functional characterization of cells is 
now integrated by modern-omics and imaging technologies, in order to 
transform medical research and clinical practice in an unprecedented 
rate [24]. Thanks to these technological and scientific advancements, it 
will be possible to reveal previously undetectable differences in the bio-
molecular composition of individual cells, in order to set the basis for 
detailed health informations ad personam (e.g. whole-genome, whole-
transcriptome and whole-proteome profile), that would be usefully 
employed in clinic, both to perform a more exact prediction of disease 

susceptibility and diagnosis, and to finally develop a personalized 
therapeutic strategy [25].

Even if a great amount of progress in this field has been done in 
order to translate experimental single-cell pharmacogenomic studies 
into clinical practice, there is the urgent need of further improvements 
(e.g. innovative high resolution cell imaging methods, platform 
measuring simultaneously chemical, physical, molecular, structural 
and electrical cell properties among individual cells, etc.), in order to 
transform the “old” knowledge of systems biology through the “new” 
insights derived from cellular heterogeneity by single-cell studies. 
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