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Abstract
Well known, well detected and still used by athletes, clenbuterol is one of the β2-agonists which has no authorization 

for therapeutic use, contrarily to salbutamol, salmeterol and formoterol in the 2012 World Anti-Doping Agency list. 
However, clenbuterol is still detected in athletes’ antidoping test samples. Its ability to induce muscle hypertrophy but 
also its strong lipolytic action and the absence of androgenic effects have made it a prized substances by athletes, 
specially females, without scruples whose performance requires significant muscle strength. Like the effects of 
clenbuterol on the heart, the effects of clenbuterol on skeletal muscle are dependent on the doses used and duration 
of the treatment. If there is a consensus concerning the clenbuterol action on the phenotypic conversion from slow to 
fast type fibers and on the hypertrophy, there is, to our knowledge, no consensus concerning the effects of clenbuterol 
on the slow type fibers and slow profile muscles. There is also no consensus concerning the clenbuterol effects on 
performance.

We will shortly reviewing the known operating mode, side and benefits effects of short and long term β-agonists, 
and specially clenbuterol, treatment on mammals.

*Corresponding author: Aymeric Douillard, INRA UMR866 DMEM 2, place Pierre 
Viala 34060 Montpellier, France, Tel: +33499612338; Fax: +33467545694; E-mail: 
aymerichpz@yahoo.fr 

Received November 03, 2011; Accepted December 24, 2011; Published 
December 29, 2011

Citation: Douillard A (2011) Skeletal and Cardiac Muscle Ergogenics and 
Side Effects of Clenbuterol Treatment. J Sport Medic Doping Studie S1:001. 
doi:10.4172/2161-0673.S1-001

Copyright: © 2011 Douillard A. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Introduction
Among the various pharmacological doping substances, the β2-

agonists were first used for their bronchodilatory property by smooth 
muscle relaxation. According to the World Anti-Doping Agency 
(WADA) the use of all β2-agonists and their isomers D and L is banned 
in sport. An authorization for therapeutic use may be granted for 3 
β2-agonists, salbutamol, salmeterol and formoterol in an inhaled form. 
However, clenbuterol is placed on the banned list in the class of anabolic 
agents and that of β-agonists. Its ability to induce muscle hypertrophy 
but also its strong lipolytic action and the absence of androgenic effects 
have made it a prized substances by athletes, specially females, without 
scruples whose performance requires significant muscle strength.

The importance of the signaling pathway of β2-adrenoceptors in 
the heart is well known today, however, only recently have we begun 
to understand and take into consideration the importance of this 
pathway in the skeletal muscle. Yet since the early 1980s, numerous 
studies have demonstrated the effect of β2-adrenoceptors stimulation 
on the growth of skeletal muscle [1-15]. Although originally used to 
treat bronchospasm, it became apparent that some β-agonist could 
increase skeletal muscle mass and decrease body fat. These side effects 
have proven to be of interest to the livestock industry which has tried to 
increase the intake of animal weight and to improve meat quality, but a 
series of food poisoning across the Europe have led to a ban on the use 
of clenbuterol in animal husbandry in 1996.

The effects of β-agonists on skeletal muscle and heart, allowed us to 
identify potential therapeutic applications in conditions of muscle loss, 
attempting to mitigate or reverse the muscle wasting and weakness 
associated, but also trying to improve muscle growth after injury 
[1,3,16,17]. However, side effects were observed on heart and have 
limited the application of β-agonists and their therapeutic potential 
[18,19]. Yet these β-agonists have been repeatedly used for doping 
[20,21], because chronic treatment leads to a phenotypic conversion to 
a higher fast skeletal muscle profile and a hypertrophy of muscle fibers 
without dependent androgenic effects.

Operating Mode
Adrenergic receptors belong to the family of guanine nucleotide 

binding G protein-coupled receptor (GPCR) implicated in the 

regulation of cardiovascular, respiratory, metabolic and reproductive 
functions. The β-adrenoceptors belong to the subfamily of rhodopsin 
receptors which also include dopaminergic, adenosine and histamine 
receptors [22,23]. These receptors are coupled to a G protein composed 
of three subunits (α, β, γ). The structure of the GPCRs is composed 
of seven transmembrane α -helices forming three extracellular loops, 
including the NH2 terminus and three intracellular loops including the 
COOH terminus [24,25]. There are three subtypes of β-adrenoceptors, 
β1, β2 and β3 [26-29], which possess 65-70% homology [30].

Anabolic pathway

In skeletal muscle, the proportion of β2- adrenoceptors is 
about 90%, that of β1- adrenoceptors ranged from 7 to 10% and β3- 
adrenoceptors are located in fat cells and in cardiac muscle [31]. In 
addition, β- adrenoceptors have a higher density in slow muscles like 
Soleus than in fast muscles such as Extensor Digitorum Longus (EDL) 
[32]. However, the functional significance of this difference in density is 
not well understood, in fact, the response to treatment with β-agonists 
appears to be greater in fast muscles than in slow muscles [33,34]. This 
may be partly explained by the down-regulation of receptors following 
prolonged treatment [14].

The β2-adrenoceptors bind to and Gαs and Gαi proteins [35-37]. 
The protein Gαi is essential in the spatial localization of Gαs and in 
the ensuing cyclic Adenosine MonoPhosphate (cAMP) response 
[38,39]. This cAMP dependent pathway is one of the pathways 
responsible for hypertrophy induced by β2-adrenergic stimulation in 
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skeletal muscle. In addition, the Gβγ heterodimer is able to initiate a 
response independent of Gα subunit after β2-adrenergic stimulation 
[40]. Indeed, the Gβγ dimer can activate the signaling pathway of 
Phosphatidylinositol 3-kinases (PI3K) [41]. PI3K is an essential protein 
involved in the activation of Protein Kinase B (Akt) through PIP2/PIP3 
who creates two lipid binding sites to Protein Kinase B. Akt could then 
be phosphorylated and activated by 3’-Phosphoinositide-Dependant 
protein Kinase 1 (PDK). Akt is known to activate downstream effectors 
like Forkhead box (FoxO), Mammalian Target Of Rapamycin (mTOR), 
4E binding protein 1 (4EBP1) or ribosomal protein S6 (rpS6), well 
known to be involved in protein synthesis, gene transcription or cell 
proliferation [42-44] (Figure 1).

Catabolic pathway

Some studies in the early 90’s have recorded variations in the 
calpain system induced by clenbuterol treatment. Calpains are Ca2+-
dependent cysteine proteases that constitute a large and diverse 
family. Skeletal muscle fibers contain ubiquitous calpain 1 and 2 but 
also calpain 3 (p94) which has, since recently, been described as a 
muscle-specific calpain [45-47]. Calpastatin is the endogenous protein 
that specifically inhibits the proteolytic activity of calpains including 
both calpains 1 and 2 [48]. However, the activity of ubiquitous 
calpains depends on many factors other than calpastatin, such as Ca2+ 
concentration, autolysis, intracellular localization and, although not yet 
clearly defined, by phosphorylation [49]. The precise roles and normal 
regulation of calpains in skeletal muscle are currently unclear, although 
they are likely to be involved in cytoskeleton organization, the cell cycle 
and apoptosis [48]. Calpains can degrade cytoskeletal and myofibrillar 
proteins [50,51] but are mostly involved in limited proteolysis of some 
specific target proteins [48]. Several studies reported that calpains are 
involved in skeletal muscle remodelling and atrophy.

In skeletal muscle, a decrease in calpain 1 activity along with an 
increased calpain 2 and calpastatin activities/expression follow chronic 
high doses of clenbuterol [52,53]. Recently, we show that 21 days of 
clenbuterol treatment induced an early activation of the skeletal muscle 
calpain system as judged by the increased calpains’ activity and calpain 
2 autolysis that occur both in fast and slow muscles 12h after the first 
injection [5]. The catabolic pathway of ubiquitin proteasome seems 

to be also involved in hypertrophic process under clenbuterol action. 
Indeed, Yimlamai et al. has shown that rats treated with clenbuterol had 
a reduced ubiquitin-proteasome activity in an Insulin Growth Factor 
(IGF-1) independent manner [54]. Hence, there is, to our knowledge, 
no consensus concerning the importance of the catabolic pathway in 
the clenbuterol induce muscle remodelling.

Main Effects and Applications
The primary effect of clenbuterol is a relaxation of smooth 

muscle causing bronchodilation. However, the use of β-agonists in 
the breeding industry has highlighted many side effects. Following 
treatment with clenbuterol, the main findings reported are the increase 
in lean body mass, decreased fat mass and thus increasing the ratio lean 
mass/fat mass. There is also a phenotypic conversion of slow fibers to 
fast fibers but also hypertrophy of muscle fibers that is dependent on 
muscle studied and the type of fiber. We observe, finally, abnormalities 
of calcium homeostasis during treatment with β-adrenergic including 
reducing sarcoplasmic reticulum Ca2+ loading in the EDL and Soleus 
muscles induced by an increase in the liability release [55,56].

Increase in mass ratio lean / fat mass

Studies in the breeding industry showed that after a treatment with 
a β-agonist an increase in lean mass concomitant with a decrease in 
body fat of treated animals compared to control animals was observed 
[57-67]. Several studies in humans and animals, showed a strong 
lipolytic effect resulting especially from the thermogenic properties 
of the β-agonist [65,68-75]. Adipose tissue is a major site for both 
thermogenesis and of course for the storage of fat. The β-agonists, 
including clenbuterol, act on receptors of this tissue to increase lipolysis 
[76]. Precisely on small animal and specifically with clenbuterol, there 
is a 36 g increase in mass of Wistar rats after treatment for one week 
(250 μg.kg-1.d-1) while rats receiving placebo treatment have had an 
increase of 18 g [11]. Another study reported that treatment (1 mg.kg.-

1d-1) for 15 days increases by 9 % the weight of the rats while reducing 
(4 %) the food intake [77]. Furthermore, treatment (1.5 mg.kg.-1d-1) for 
3 weeks increases skeletal muscle mass, in an age dependent manner: 
the more the rats are young, the more the skeletal muscle mass increase 
is important. Hence, for 3 months old rats, the skeletal muscle mass 
compared to the total mass represents 22 % of control rats and 39 % 
of clenbuterol treated rats, whereas the same treatment for 3 weeks in 
for 23 months old rats, the skeletal muscle mass compared to the total 
mass represent 22 % in the control rats and 25 % of the clenbuterol 
treated rats [3].

Cardiac muscle

Effects when taking acute: Various studies have examined the 
dose-dependent responses in the heart following acute treatment with 
clenbuterol. It should be noted studies from Burniston et al. [78] which 
suggested a deleterious effect of clenbuterol on cardiomyocytes at doses 
between 0.01 mg.kg-1 and 5 mg.kg-1. Indeed, at these doses, their studies 
show an onset of necrosis of cardiac muscle fibers in endocardial left 
ventricle. It is important to note here the difference between necrosis 
and apoptosis. Indeed, there are two phenomena of cell death. On the 
one hand, necrosis is the premature cell death; it can be caused by 
external factors such as infection or administration of toxins (poisonous 
bite of an animal for example). On the other hand, apoptosis is the 
programmed cell death. It is the process by which cells trigger their 
destruction in response to a signal [79]. Unlike necrosis, apoptosis does 
not induce inflammation and cell membranes are not destroyed. At an 
injection of clenbuterol at a dose of 0.01 mg.kg-1, necrosis reaches about 

Arrows represent action (activation or inhibition) on downstream effectors.
Figure 1: Signaling pathways probably involved in clenbuterol induced muscle 
hypertrophy and phenotypical shift.
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4 % fibers [80] and nearly 8 % of the fibers with the administration of 
larger doses (5 mg.kg-1). The same study shows that the peak of necrosis 
of cardiac fibers is reached between 12 to 15 hours after administration 
of clenbuterol. Another more recent study [81] shows a time effect 
and dose-dependent apoptotic-necrotic reactions. Indeed, apoptotic 
phenomena, demonstrated immunohistochemically by an antibody 
directed against a marker of apoptosis, the caspase 3, appear less 
than an hour after the subcutaneous injection of clenbuterol at doses 
between 1 mg.kg-1 and 5 mg.kg-1. This apoptotic phenomenon reached 
a peak 4 hours after injection. However, the number of apoptotic cells is 
limited and does not exceed 0.8 % of the total area studied. In the same 
study, the phenomena of necrosis, revealed by an antibody against 
myosin and injected intraperitoneally one hour before the injection 
of clenbuterol, appear 3-4 hours after injection at doses between 100 
μg.kg-1 and 5 mg.kg-1. This phenomenon reached its peak of necrosis 12 
hours after injection as shown in the first study. These results suggest a 
rapid implementation of processes for the destruction of heart muscle 
cells.

Effects of chronic intake: Many studies have investigated 
the possible effect of chronic treatment for several days on the 
heart muscle. In a first study, Emery et al. [6] observed no effect of 
clenbuterol (2 mg.kg.-1d-1) after one week of treatment on the mass of 
the heart muscle. Similarly, according to a study by MacLennan and 
Edwards, one week of treatment with clenbuterol did not significantly 
increase the mass of the heart in rats [11]. However, in this study, doses 
of clenbuterol injected remained low (250 μg.kg-1.d-1) compared to 
other studies. Indeed, Choo et al. observed in their study, after 4 days 
of treatment (4 mg.kg.-1d-1), an increase of 12 % of the mass of the heart 
[4]. Equivalently, treatment of 2 mg.kg.-1d-1 causes an increase of 18 to 
20 % of cardiac mass after 2 and 5 weeks of treatment [82]. Clenbuterol 
is an agent that can induce cardiac hypertrophy, but it seems necessary 
to apply, to observe that hypertrophy, a treatment with high doses or 
long treatment [14,33,83-85]. However, the prolonged administration 
appears to have toxic effects on the heart [19,86]. Duncan et al. 
[87] have particularly highlighted the infiltration of collagen in the 
heart of rats treated with clenbuterol. This appearance of collagen 
could be related with phenomenon such as apoptosis, necrosis and 
inflammation described by Burniston that may precede the infiltration 
of collagen [80]. High doses of clenbuterol (2 mg.kg.-1d-1) administered 
for several months induced a strong left ventricular hypertrophy, but 
also infiltration of collagen and mechanical damage such as reducing 
the pressure in the left ventricle [87,88]. However, β-As have beneficial 
effects on the heart as they have been used to treat patients after a heart 
attack to limit or counteractatrophy [82,89,90].

The effects of β-agonists on the heart are dependent on dose and 
duration of treatment. Thus, to observe cardiac hypertrophy treated 
with high dose over several weeks seems necessary. However, the 
deleterious effects of high doses taken in acute or chronic treatment 
(necrosis, infiltration of collagen) limit the therapeutic uses of these 
β-agonists.

Skeletal muscle

As we have seen previously, clenbuterol induced an increase in 
skeletal muscle mass during treatment. Two phenomena are responsible 
for this increase in mass, the phenotypic conversion of muscle fibers 
towards a faster profile and hypertrophy.

Effects of clenbuterol on the phenotypic conversion: During 
prolonged treatment with clenbuterol, there is a phenotypic conversion 
to a faster profile of skeletal muscle. Chronic administration of 

clenbuterol to rats or mice leads to a transition from slow (type I) to 
fast (type II) muscle fibers [1,57,91-95]. In addition, the phenotypic 
conversion is also observed among the fast fibers, from type IIa fibers 
to type IIx fibers or fiber type IIb [93]. This transition towards a 
more glycolytic profile is not only metabolic (glycolytic or oxidative) 
but also structural with changes in the MHC isoform composition 
and therefore in the contractile properties of the muscle [96]. These 
phenotypic changes usually occur during muscle development [97], 
following a protocol of electrical stimulation at high frequencies [98] 
during denervation or hormonal changes [99], while reducing load 
during a simulated loss of gravity during muscle regeneration [7] and 
in a more limited manner following a training protocol [100,101].

The mechanisms that control the phenotype of slow muscle fibers 
were studied and some signaling pathways have been described, 
including many factors such as calcineurin and Nuclear Factor of 
Activated T-cells (NFAT) [102,103], Ca2+/calmodulin dependant 
kinase (CamK) [104], the Peroxisome proliferator-activated receptor 
Gamma Coactivator 1 (PGC1α pathway) [105] and that of Peroxisome 
Proliferator-Activated Receptor δ (PPAR-δ) [106] or Ras [107]. 
However, the mechanisms controlling the expression of a fast muscle 
phenotype are less known. A work by Grifone et al. [108] suggest 
that the binding of Six1 to the cofactor Eya1 exerts a transcriptional 
regulation of the expression of fast MHC. The complex Six1/Eya1 would 
bind to MEF3 to induce expression of MHC proteins quickly. Indeed, 
when cotransfecting plasmids of Six1 and Eya1 by electroporation in 
the soleus muscle of mice, it was observed a phenotypic conversion of 
slow fibers I and IIa to faster IIb fibers. Recent data from Richard & 
Maire, shows that absence of Six1 and Six4 leads to the development 
of dorsal myofibers lacking expression of fast-type muscle genes 
indicating a probable implication of Six1 and Six4 in the regulation 
of fast-twitch MHC [109]. However, even if the administration of 
clenbuterol produces a similar effect, no study has, for now, highlighted 
an influence of the clenbuterol on the expression levels of Six1 and 
Eya1 in the skeletal muscle.

Effects of clenbuterol on hypertrophy: As discussed above, 
chronic treatment with clenbuterol leads to increased skeletal muscle 
mass. This increase in mass is treated as a pure muscle cell hypertrophy 
[110] because hyperplasia is not associated with increased protein [93]. 
Other β2-agonists such as cimaterol, salbutamol or isoproterenol induce 
hypertrophy, but when administered at high doses, clenbuterol is one 
of the most effective agents for inducing hypertrophy. The ability of 
clenbuterol to induce muscle protein synthesis [4,6,12,65,66,111,112] 
and reduce protein degradation [12,65,93,113-115] was the basis of 
demonstration of its anabolic power. However, there is no consensus 
on a preferential mechanism responsible for this clenbuterol induced 
hypertrophy. A more recent study highlights the ability of clenbuterol 
to activate the signaling pathway Akt/mTOR highlighting the fact that 
clenbuterol is responsible for both a decrease in protein degradation 
and increased protein synthesis [116]. On the other hand, the study of 
Shi et al. suggests that the Mitogen-Activated Protein Kinase (MAPK) 
signaling pathway is involved in hypertrophy induced by clenbuterol 
[117]. The same study shows that Extracellular signal-Regulated Kinase 
(ERK) is differently regulated between the fast muscles and the slow 
muscles. Indeed, following treatment with clenbuterol, ERK activity in 
the soleus is increased by 39 % whereas in the Tibialis Anterior (TA) 
and the Gastrocnemius, there was an increase of 2.3 and 2.5 times the 
control levels of the ERK activity.

It should be noted that the effects of clenbuterol are different 
depending on the species and it seems that the effects in humans are 
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less pronounced than in the farmed species. Moreover, the effects 
within a species vary depending on the tissue, mainly because of the 
density and distribution of different subtypes of receptors for a given 
tissue and species [118,119].

The administration of β2-As leads to hypertrophy of type I fibers 
[57,94,120] and type II fibers [15,64], but some studies show a similar 
increase in the size section of different types of fibers [121,122]. Here 
again, consensus does not exist. However, the disparity in species and 
age of animals at the beginning of treatment, the β-agonist used and the 
doses, route of administration, frequency and duration of treatment 
does not favor the establishment of a consensus.

Effects of clenbuterol on performance: Spann and Winter showed 
that low doses of clenbuterol don’t improve performances [123]. 
Contrary to them, studies reported that large doses of clenbuterol 
(1 mg.kg.-1d-1/ 2mg.kg.-1d-1) could have deleterious effects on rats’ 
performances. Indeed, mice treated with clenbuterol for 8 weeks (1.6 
mg.kg.-1d-1) and submitted to interval training showed a reduction in 
total work performance (-25 %) at a run-to-exhaustion treadmill test 
[124]. Similarly, a treatment period of 14 weeks (2 mg.kg.-1d-1) with 
clenbuterol induced a 50 % decrease in swimming time to exhaustion a 
57 % decrease of voluntary running time and a 43 % decrease of speed 
running [87]. These data suggests that a long clenbuterol treatment 
could decrease performances by earlier exhaustion.

 According to Duncan, the limitations of oxidative capacity induced 
by β2-agonists, the decrease in blood flow and cardiac muscle alterations 
structure are responsible for this decrease in performance [87,124]. 
Localized collagen infiltration in the left ventricular and increase 
cardiac mass could have contributed to the overall decrease in exercise 
training performance. Moreover, as shown previously, clenbuterol 
is responsible for phenotypic conversion from slow to fast skeletal 
muscle fibers. This conversion and therefore the greater proportion 
of fast fibers induces a greater velocity of shortening/contraction 
[15,125] which could make the muscles less resistant to fatigue [125]. 
Torgan and colleagues reported that the metabolic phenotype is also 
modified by clenbuterol treatment in rats. In this study, clenbuterol 
was responsible for a reduction of muscle oxidative potential by 
reducing the Citrate Synthase (CS) activity in fast muscle (plantaris, 
white gastrocnemmius) and this decrease could be minimized by 
endurance training [126]. Mounier et al. also reported in EDL that 
strength training seemed to counteract, to some extent, the molecular 
modifications induced by chronic clenbuterol administration [127]. 
According to this study, a 2 mg.kg.-1d-1 clenbuterol treatment improved 
activities of PhosphoGlycerate Kinase (PGK) and enolase but decreased 
PhosphoFructoKinase (PFK) and CS activity. Thus, the activity of some 
oxidative enzymes is decreased following treatment with clenbuterol 
whereas the activity of glycolytic enzymes is improved by clenbuterol 
[126,128-130].

However, isometric force from trained rats treated with clenbuterol 
(8 weeks to 2 mg.kg.-1d-1) is increased compared to trained rats who 
received no additional treatment [131]. Moreover, clenbuterol is able 
to induce an increase in the maximum tension evoked without any 
muscle hypertrophy [15]. Although, clenbuterol induced hypertrophy 
strength gain relative to muscle mass is no more significant. Indeed, 
the absolute maximum force is enhanced by clenbuterol while the force 
relative to muscle mass is unchanged [10,33,125].

Conclusion
Like the effects of clenbuterol on the heart, the effects of clenbuterol 

on skeletal muscle are dependent on the doses used and duration of the 

treatment. If the consensus is established on the action of clenbuterol 
on the phenotypic conversion from slow to fast type fibers and on the 
hypertrophy, all studies do not meet on the effects of clenbuterol on the 
slow type fibers and muscles with a slow profile. Thus, it seems clear 
that the phenotypic conversion occurs in all types of muscle from slow 
fibers to fast fibers, the speed and the intensity of the shift are not found 
in identical form in all studies. Similarly, if hypertrophy of fast fibers 
in all types of muscles is generally found, hypertrophy of type I fibers is 
one more time highly dependent on the dose used, the duration of the 
treatment and the type of muscle studied.

Regarding the performance, clenbuterol does not seem so 
interesting for athletes. As expected, if the effects on endurance 
performance are negative, the effects on strength or power performance 
are not necessarily beneficial. Thus, if the maximum speed limit is 
decreased, the force appears to be enhanced when the hypertrophy is 
not yet present. When hypertrophy is present, the absolute strength 
is increased and the relative strength of muscle weight is on her 
diminished. More work is needed to understand the mechanisms of 
clenbuterol action and fight more efficiently doping.
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