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Introduction
New methodologies enabled by Next Generation Sequencing (NGS) 

that are of particular interest to us include transcriptome analysis for 
RNA research [1] and mitohondrial sequencing from exome data [2]. 
Such applications include those in which the researcher is interested 
in assembling only specific content within a genome of interest, using 
a set of targets to initialize the assembly process. It may seem trivial to 
identify the reads of interest among those produced by NGS hardware, 
using well-known general-purpose alignment or mapping tools such as 
Blat [3], Bowtie 2 [4], BWA [5], and SOAP [6]. But even an efficient tool 
may be difficult to incorporate directly into a bioinformatics pipeline 
before the assembly stage, since it may be necessary to convert data to 
a different file format. For example, existing mappers usually use the 
SAM/BAM [7] file format as output. None use SFF format files [8] as 
both input and output, and none but Bowtie2 support FastQ output, 
and it is supported only in a limited sense.

Moreover, it is difficult to use existing mapping software tools 
when it neces-sary to establish a similarity threshold, i.e. when one 
wants reads that are 50%, 70% or 85% similar to the target (Figure 1). 
Relying only on input parameters such as gap penalties and seed size, 
which most well-known aligners have, it is difficult to achieve flexible 
mappings with require percentage of similarity. On the other hand, it is 
often desirable to find reads that are at least 90% similar to the provided 
target, and to discard the rest.

Another problem arises if there is insufficient data on the edge of 
the target located within a reference genome (Figure 1). In this situation 
the whole read (marked red) can potentially be discarded due to lack 
of data on the edge, even if a part of the read has significant similarity 
to the target.

We present SlopMap, bioinformatic software utility that quickly 
and flexibly identifies sequence reads that are within a given percent 
similarity to a target sequence. SlopMap is not a sequence alignment 
mapper, but rather identifies reads which may have been derived from 

the target region. Unlike traditional alignment software, SlopMap 
only reports reads that are similar to the pro-vided target. SlopMap 
selects reads for downstream analysis, such as assembly of sub-
genome targets i.e. bacterial plasmids, virae, mitochondria, exome 
cap-ture data, chloroplasts, transcriptomes, etc. It employs exact kmer 
matching, which we call sloppy mapping, without conducting the 
computationally expen-sive alignment stage of traditional mappers. 
SlopMap can be directly embedded in biological data processing 
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Abstract
With the advent of Next-Generation (NG) sequencing, it has become possible to sequence an entire genome quickly 

and inexpensively. However, in some experiments one only needs to extract and assembly a portion of the sequence 
reads, for example when performing transcriptome studies, sequencing mitochondrial genomes, or characterizing 
exomes. With the raw DNA-library of a complete genome it would appear to be a trivial problem to identify reads of 
interest. But it is not always easy to incorpo-rate well-known tools such as BLAST, BLAT, Bowtie, and SOAP directly into 
a bioinformatics pipelines before the assembly stage, either due to in-compatibility with the assembler’s file inputs, or 
because it is desirable to incorporate information that must be extracted separately. For example, in order to incorporate 
flowgrams from a Roche 454 sequencer into the Newbler assembler it is necessary to first extract them from the original 
SFF files.

We present SlopMap, a bioinformatics software utility which allows rapid identification similar to provided target 
sequences from either Roche 454 or Illumnia DNA library. With a simple and intuitive command-line interface along 
with file output formats compatible with assembly programs, SlopMap can be directly embedded in biological data 
processing pipeline without any additional programming work. In addition, SlopMap preserves flowgram information 
needed for Roche 454 assembler.
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Figure 1: Situation when red reads on the edge of the target can be discarded 
by the general-purpose mapper. Green sequences can still be reported.
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pipelines before an assembly stage, since it main-tains file format and 
preserves the original information such as bases, quality scores, and 
flowgrams (in the case of SFF files). SlopMap accepts both SFF (Roche 
454 or Life Sciences Ion Torrent/Proton) and fastq (Illumina) file 
for-mats. SlopMap is a simple, easy to use and robust tool that can be 
used with percent similarity to targets as low as 5% (95% dissimilar). 
SlopMap along with its user manual is freely available under GPL from 
Bitbucket: http://bitbucket.org/izhbannikov/slopmap/ .

Method
SlopMap is fully implemented and optimized in C++ for efficiency. 

This is a command line application with all the input parameters 
specified on the command line. SlopMap is tunable via input parameters 
for kmer size k, percentage of similarity t and distance between two 
consecutive kmers d. It also supports flexible input and output file 
formats: FastQ, FastA, SFF and TXT.

Input Files

Target: The target library file, also known as a “database”, is 
a FASTA formatted file that contains one or multiple records. Each 
record consists of two parts: a header and a sequence string. The header 
must contain a name which is a unique identifier of the record. The 
sequence string is DNA sequence which specifies the target of interest.

DNA Query Library Files: The DNA query library files are data 
from the NGS machines. SlopMap can take either Roche 454 SFF or 
FASTQ formatted files, or Illumina paired or single end reads. SlopMap 
computes the similarity of each read in a query library file to record in 
a target library.

Search procedure

SlopMap employs a multi-kmer search approach with single-base 
overlap (that can be increased) between two consecutive kmers in order 
to quickly determine the similarity to the target record. The algorithm 
is simple and straightforward:

1.	 Compute a dictionary from the given target library.
2.	 For each query sequence (‘read”) in the DNA query library:
•	 Compute a set of consecutive kmers.
•	 Calculate the read’s similarity to the set of target sequences
3.	 Output summary statistics and files.
Dictionary: The first step is to build a dictionary indexed with 

kmers by sampling the given target (Figure 2). The kmers are short 
(usually 9-15 bases long) substrings representing the contiguous target. 
The target library sequences are sampled with the following pre-defined 
parameters: kmer size and a distance representing the constant overlap 
between consecutive kmers. These parameters remain unchanged 
throughout program execution. All kmers are hashed and associated 
with the offset position in the target string and a target record id. By 
default SlopMap uses kmer size of 15 bases. Google Dense Hash Map 
[9] that allows for fast data retrieval and memory efficiency is used as a 
data structure for the kmer dictionary.

Kmer matching: Query strings are sequentially sampled, so each 
query string contained within a given DNA query library is handled 
individually. Kmer size and a distance between two consecutive kmers 
remains the same for all reads in the query library. For each read taken 
from the query library, a dictionary search is performed and similarity 
between the read and the target is calculated as follows:

number of shared kmers kmer Length ,0 1
Min_length (query string, target string)

∗
= ≤ ≤S S

Where number shared bases are the total length of kmers shared 
between the target and query string, Min length (query string, target 
string) is the minimum length, either of the query or target. Those 
reads that meet the pre-specified similarity threshold (parameter “−t” 
in SlopMap, by default it is set to 0.75) are then saved in output files, 
others are ignored. The values of S range from 0, having no similar 
kmers to the target, to 1, having all kmers shared between the read and 
target.

Output files

The output files are:

•	 A report file that contains all information about the reads, 
including similarity, positions of first and last match within the 
target, bases and quality scores.

•	 One or two FASTQ formatted file(s), depending on whether 
the data are from single-or paired-end library.

•	 Optionally, an SFF formatted file, which contains only those 
Roche 454 sequences similar to the provided target.

Validation
To validate SlopMap we compared it to several alternative DNA 

mapping tools: Bowtie 2, BWA, Blat, on two different query DNA 
libraries: 621,578 Roche 454 Escherichia coli K12 W583 reads; and 
3,875,453 Illumina Yeast Saccharomyces cerevisiae W303-K6001 reads. 
For the target sets, we randomly chose ten genes with various lengths 
from both genomes, each of which has over 4000 genes: thrA, thiQ, 
cydD, ycgB, dhaR, alkA, yfgF, yphE, mscS, parC (E-coli, GenBank 
accession number: U00096.2); YNL095C, YNL094W, YNL093W, 
YNL092W, YNL091W, YNL090W, YNL089C, YNL088W, YNL087W, 
YNL085W (Yeast, GenBank accession number: AF458977.1).

We estimate the number of reads found by SlopMap with various 
thresholds and kmers in order to:

•	 Estimate the effect of threshold to the number of reads found by 
SlopMap. Suggest values of t and k for optimal read recovery.

•	 Estimate the effect of various values of d (distance between two 
consecutive kmers) to the number of reads found by SlopMap 
against various threshold values allowing us to determine the 
range of optimal values for d.

•	 Compare the number of reads found by SlopMap to the number 
of reads found by other tools. In particular, to answer the 
question: what are the threshold values where read sets found 
by other tools are still subsets of reads found by SlopMap.

All tests were performed on a Linux server with Dual-Core AMD 
Opteron 8216 2.4 GHz processors (32 processors total) and 1 TB of 
shared memory and a laptop with single Intel Core i3 processor (four 
cores) with 4GB of memory.

Results and Discussion
We calculated the number of found reads using various threshold 

value and kmer sizes and compared our results to existing read 
mappers. These results are presented in Figure 3, which shows the 
number of reads against various distances between two consecutive 
kmers. Further comparisons are made to compare the overlap between 
recovered read sets. These results are presented as Venn diagrams in 
Figures 5 and 6. We also provided recommendation for optimal values 
of parameters k and d.

http://bitbucket.org/izhbannikov/slopmap/ 
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Figure 2: Sampling the target with constant pre-defined kmer size k and a distance d between two consecuitive kmers.
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Figure 3: Number of reads found by SlopMap versus various percent identity threshold values t and different kmer lengths k. At the left side of the plot there is large 
amount of reads found for k ≤ 9 and t ≤ 0.2 showing that these parameter values may result in many false-positives. Larger values of k and t can be used to be more 
selective in read recruitment or in situations where the reference is highly similar to the sequenced reads. Roche 454 E. coli K12 W583 DNA library (621,578 reads) 
was used as a query library for this test.

Number of reads found by SlopMap using different threshold 
values and kmer lengths

Figure 3 shows the number of reads found by SlopMap using 
different kmer sizes and threshold values. From this plot it’s easy to see 
that for kmer values k, of 7, 8, 9 along with threshold value less than 
0.1 (10% of similarity), large amount of reads found. These values of 

k should be used only in such situations where the forged sequence 
is very divergent from the sequenced sample. Low values of t and k 
result in high sensitivity at the expense of specificity and should be used 
carefully to avoid multiple false positive hits.

Values of k within the range 10...15 can be used to generate more 
specific matches and are recommended for general usage. Higher 
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values of k will result in less false positive mapping, SlopMap will not 
match kmers with mismatches, and will fail match reads at higher 
values of k. This is especially true in situations where reads have errors 
or adapters, which will generate false kmers and where there are real 
variants between the target and sequenced sample.

Number of reads found by SlopMap using various threshold 
values and distances between two consecutive kmers

In order to examine how different values of parameter d (the 

distance between two consecutive kmers in a read) impacts to the 
number of reads found by SlopMap and propose the optimal value for 
d, we provided a set of tests with kmer size k=11 and threshold values 
t=0.1...1.0 (i.e. from 10% to 100% similarity). This is shown in Figure 4. 
We find that in this data set, d has minimal impact on read recruitment. 
However we observe a higher recruitment rate for lower d, suggesting 
higher sensitivity. Using a small d result in slower performance 
however, so in cases where target and reference are highly divergent, 
a low d should be used, while a higher d can be used for more similar 
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Figure 4: Number of reads found by SlopMap against various threshold val- ues and different distances between two consecutive kmers. Roche 454 E. coli K12 W583 
DNA library (621,578 reads) mapped against a single bacterial gene ycgB (1583 bp) was used as a query library for this test.
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sequences. With these considerations in mind, we have set the default 
value of d to 3, and allow the user to change it using the command-line 
parameter -d=N. Our recommendations for the parameter d value to 
be no more than kmer length. Otherwise there may not be sufficient 
coverage. The values for the d from 1 to 5 are optimal for k=11 bases, 
since they give number of reads significantly higher than other tools 
within t ≤ 0.5 (t=0.75 is set by default in SlopMap).

Sensitivity test: comparison the number of reads reported by 
SlopMap and other tools

Gaps occur when part of the query aligns to one part of the 
reference and another part aligns close to the first part but with a gap 
of one or more bases. Such gaps are usually well recognized by some 
widely used aligners. Another type of gap can occur at the end of a 
target sequence, when part of the query matches the target, resulting 
in an end gap. SlopMap can find such reads and thereby identify 
more similar sequences than some other alignment tools. In order to 
compare the sensitivity of SlopMap to a set of other mappers (BWA, 
Blat, Bowtie2), we conducted several tests using Roche 454 reads from 
E. coli mapped against ycgB gene sequence. We are interested what the 
cut-off point is when reads found by alignment tools are still subsets 
of reads found by SlopMap. We can roughly say that the set of reads 
reported by one application is a subset of reads reported by another 
application if there is more 95% overlap between these two sets. For two 
kmer lengths (10 and 15 bases) and threshold values (0.1...1 with step 
of 0.1) we computed Venn diagrams that show overlap sets reported 
by SlopMap and other tools. From these diagrams we conclude that for 
threshold values below 0.3 (30% similarity) and for both kmer sizes (10 
and 15), the reads found by Blat is a subset of number of reads found by 
SlopMap. Threshold values when reads reported by Bowtie 2 and BWA 
are still subsets of number of reads reported by SlopMap are 0.7 and 0.3 
(70% and 30% similarity) for kmer size 10 and 15 respectively. Results 
are shown in Figures 5 and 6. When threshold value t is 100%, SlopMap 
does not find any reads similar to the target sequence. This is expected 

because reads can contain base-call errors, homopolymers and other 
artefacts that introduce noise into sequences.

Non-consecutive matches

When we compute the similarity of reads we do not assume that 
kmer matches are consecutive. Non-consecutive matching may occur 
in situation which is biologically possible such as exon shuffling, 
inversion, etc. In Figure 7, the read and a target are shown along 
with kmers shared between them. In this situation, kmer 1, 2 and 3 
match corresponding kmers in a target but in different order (non-
consecutive). The read can be still considered as similar to the target. 
SlopMap identifies and reports this read as being similar to the target, 
despite the rearrangement.

Timing considerations

Figure 8 displays the execution time required to complete each 
search. We com-pare execution times for various threshold values 
of SlopMap (other parameters were set to default) with other tools. 
SlopMap is faster than Bowtie2 and BWA, but slower than Blat, which 
is the fastest of the mappers we tested. However, Blat requires that the 
input be in FASTA format, and does not support writing output in 
FASTA or FASTQ format, making it necessary to perform additional 
steps, both before and after using the program. Post-mapping 
conversion work is also required for BWA and Bowtie2. Bowtie2 writes 
all sequences to the SAM file, and write unmapped or discordantly 
mapped reads to files using command line parameters to output 
mapped sequences in FASTQ file format.

Memory requirements

SlopMap is fast and require very little memory (2-200MB, 
depending on target size). The memory consumption of SlopMap 
during searching grows linearly with the number of sequences and also 
depends on the kmer size defined by the user. For example, when the E. 
coli data set containing sequences with a mean length of 450 characters 
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Non-consecutive kmer matching is still when using a target and query where rearrangements may have occurred. SlopMap identifies and reports these 
matches.
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was indexed on 15-mers, 50 kB of memory was utilized for every 20,000 
bases.

Conclusion and Future Work
SlopMap provides researchers with a high-throughput choice for 

searching large sets of reads against target sequences. The software 
presented is faster than some well-known aligners, sensitive to low-
similarity matches when desired, and flexible enough to allow similarity 
comparison for DNA (and potentially RNA and proteins). SlopMap 
is specifically designed for matching queries against large (more than 
500,000 sequences) query sets. Three of SlopMaps beneficial attributes 
are its speed, flexibility and ease of use. Despite being fast and efficient 
mapper, we plan to further improve SlopMap in the future by adding 
support for multicore execution and by exploring more space and time 
efficient methods for storing and looking up kmers.

We believe that the biological research community will benefit 
from using SlopMap.
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