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Abstract

Polycystic Liver Disease (PLD) encompasses a number of disorders with the development of multiple cysts 
distributed throughout the liver either focally or equally. Hepatic cysts are fluid-filled cavities lined by benign 
epithelium. PLD is the major phenotype of isolated Polycystic Liver Disease (PCLD) and Autosomal Dominant 
Polycystic Kidney Disease (ADPKD).

The molecular principles in carcinogenesis indicate that there is an accumulation of multiple (somatic) mutations. 
This concept assumes that presence of a germline mutation (‘first hit’) in an inherited disorder requires a ‘second 
hit’ at the somatic level for cyst development to occur. The second hit is the rate-limiting step and results in somatic 
inactivation of the normal allele.

Studies have identified secondary, somatic hits in human liver cyst tissues in PCLD and ADPKD. Inactivation of 
both copies in PLD is demonstrated through somatic mutations or loss of heterozygosity (LOH). The frequency of 
somatic mutations varies between genes and genomic disorders. Genetic studies detected LOH in 9% and somatic 
mutations in 8-29% in ADPKD derived hepatic cysts. In PCLD, almost ~80% of hepatic cysts from PRKCSH carriers 
had completely lost the PRKCSH gene. 

There is important clinical heterogeneity among PLD patients. Differences in phenotypical expression may be 
explained by age, gender and environment, but also modifier genes or inactivating somatic events may play key 
roles. This review will give an overview of the data gained from genetic studies in liver cyst tissues from PCLD and 
ADPKD patients in relation to the clinical manifestations.

Keywords: Second hit hypothesis; Somatic mutation; LOH; Loss-of-
function; PLD; PCLD; ADPKD

Abbreviations: ADPKD: Autosomal Dominant Polycystic
Kidney Disease; AE2: Anion Exchanger; AQP1: Aquaporin-1; 
cAMP: Adenosine 3’,5’-Cyclic Monophosphate; CFTR: Cystic 
Fibrosis Transmembrane Conductance Regulator; ER: Endoplasmic 
Reticulum; Epac: Exchange protein directly activated by cAMP; ERK: 
Extracellularly Regulated Kinase; LOH: Loss Of Heterozygosity; 
MAPK: Mitogen-Activated Protein Kinase; PC1,PC2: Polycystin-1-2; 
PCLD: Isolated Polycystic Liver Disease (autosomal dominant); PKA: 
Protein Kinase A; PKD1,PKD2: Polycystic Kidney Disease-1, -2; PLD: 
Polycystic Liver Diseases; PRKCSH: Protein Kinase C substrate 80K-
H (80-kDa protein, Heavy chain); SEC63: Saccharomyces cerevisiae 
homolog 63; SR: Secretin Receptor; SSTR: Somatostatin Receptor

Introduction
Polycystic liver disease (PLD) comprises a group of diverse 

congenital disorders that have presence of multiple hepatic cysts 
in common. There are 2 major conditions that possess this benign 
phenotype, isolated polycystic liver disease (PCLD) and autosomal 
dominant polycystic kidney disease (ADPKD) [1,2]. Both Mendelian 
disorders are autosomal dominantly inherited and share similar 
liver features [3]. PCLD is characterized exclusively by presence of 
hepatic cysts, and polycystic livers are the most common extrarenal 
manifestation in ADPKD [4]. Development of polycystic kidneys 
is a key feature in ADPKD, but also cardiovascular manifestations, 
intracranial aneurysms, pancreatic cysts and renal complications with 
end-stage renal disease may be present [1,3].

The origin of hepatic cystogenesis probably starts in early 
embryological phase with biliary tree development. The formation 
of the ductal plate is needed for development of healthy bile ducts. 
In genetic disorders leading up to PLD this process is compromised, 
hence the term ductal plate malformation [5]. It is likely that the nidus 

needed for cyst formation (microcysts) is already present in childhood 
of germline carriers. These microcysts are undetectable by routine 
radiological methods, but may develop later in life [4]. 

Following Knudson ‘second-hit’ hypothesis, it was proposed that 
cysts arise as a result of a second mutational event. Patients carrying 
a germline mutation (the ‘first hit’ in a PLD gene) are prone for cyst 
development. However, the single mutated allele does not necessarily 
lead to hepatic cysts, but a second somatic event is required for 
individual cysts to develop [6].

In this short review we present a comprehensive overview of 
somatic mutations and genetic mechanisms that have been associated 
with hepatic cystogenesis in PLD. 

Genetic Background
PCLD and ADPKD are distinct disorders and associated with 

germline mutations in separate genes. About ~25% of PCLD patients 
carry a bonafide gene mutation in the PRKCSH gene or SEC63 gene 
[7-10]. Both protein products, hepatocystin and Sec63p, are involved 
in protein folding, quality control and transduction in the endoplasmic 
reticulum [11]. Almost all ADPKD patients carry a pathogenic germline 
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PKD1 gene (~85%) or PKD2 gene (~15%) mutation [12-14]. The 
corresponding protein products polycystin-1 (PC-1) and polycystin-2 
(PC-2) function as a mechanosensory receptor-channel complex at the 
primary cilium for calcium influx [1]. 

The primary cilium is an extending organelle at the plasma membrane 
of the bile duct epithelium cell (cholangiocyte). Pathofysiological 
processes are functionally engaged with this structure by detection 
of the luminal flow. Defective polycystin expression contributes to 
decreased intracellular calcium and increased cAMP levels [15]. The 
combination of these abovementioned mechanisms and overexpression 
of PKA and Epac cause cholangiocyste hyperproliferation through 
the mitogen-activated protein kinase/extracellularly regulated kinase 
(MAPK/ERK) pathway and cyst fluid hypersecretion in PLD [16]. 
Current somatostatin analogue treatment affects secretin-mediated 
pathways (Figure 1) [17]. 

General Principle in Tumorgenesis
In 1953 Nordling was the first to propose the multi-mutation 

hypothesis for the origin of cancer. His theory stated that accumulation 
of DNA mutations in a cell as a consequence of normal cell proliferation, 
environmental exposure and increasing age results in carcinogenesis 
[18]. Clinical and epidemiological observations prompted Knudson to 
reformulate this hypothesis with the example of dominantly inherited 
and acquired retinoblastoma [19]. He proposed a ‘second hit’ hypothesis 
which implicates that a second mutation is required in addition to a 
‘first hit’ for tumor development.

Since then, several studies in common malignant diseases, 
particularly those caused by tumor suppressor genes such as ovarian and 
colon cancer, have produced data consistent with the mutational origin 
of cancer. This concept is refined and proof is provided that occurrence 

Figure 1: Somatostatin treatment decreases cholangiocyte hyperproliferation and fluid hypersecretion in PLD. Hepatic cysts are delineated by bile duct epithelium 
cells. The primary cilium at the plasma membrane is continuously exposed to luminal bile flow. Mechanical flow rate is sensed by bending the organelle. Under 
healthy conditions this stimulates calcium signaling and inhibits forskolin-stimulated cAMP signaling intracellularly. PC-2 co-localizes with PC-1, and PC-2 is a calcium 
channel expressed at the endoplasmatic reticulum. Cholangiocytes possess numerous transporters and exchangers. Basolateral secretin stimulates intracellular 
cAMP signaling and bicarbonate fluid rich secretion by activation of apical CFTR chloride channel. Subsequently, secreted bicarbonate drives passive AQP1-mediated 
water transport to the extracellular compartment. This figure illustrates a defective molecular mechanism in PLD. Decreased intracellular calcium and accumulation of 
second messenger cAMP contributes to hepatic cystogenesis [15]. Phosphorylation of PKA and Epac are associated with increased MAPK/ERK signaling in PLD. In 
response to this activated pathway fluid secretion and cell proliferation is facilitated [16]. Somatostatin acts via SSTR-2 somatostatin receptors to increase cGMP which 
inhibits secretin-mediated cAMP synthesis. Secretin-stimulated chloride, bicarbonate and water secretion are inhibited and absorption is induced by somatostatin 
analogues (in red).
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of 2 (somatic) ‘hits’ may be sufficient for tumor development in sporadic 
malignant diseases [20,21]. The result from both mechanisms is biallelic 
inactivation through loss of the wild-type copy. Second hits are usually 
small deletions or insertions resulting in a truncated protein, but large 
deletions at the gene locus with Loss Of Heterozygosity (LOH) are also 
seen [20-24] 

Identification of Somatic Inactivation in ADPKD and 
PCLD

Subsequent to the identification of the first causative PKD1 gene 
for ADPKD, researchers have speculated about presence of somatic 
mutations that would lead to the inactivation of the second PKD1 allele 
[12]. In order to address this issue, methods have been developed to 
isolate cyst-lining epithelial cells to access DNA from single cysts. These 
studies confirmed the second hit hypothesis in renal cyst epithelium 
from PKD1 affected patients [23,25,26].

Kidney
Genetic analyses using microsatellite markers established loss of 

the healthy PKD1 allele in 4-24% of renal cysts from PKD1 affected 
ADPKD patients. Somatic mutations were reported in 17% of renal 

cysts from a PKD1 mutation carrier [23,25-28]. Likewise, renal cysts 
from ADPKD patients harboring a PKD2 germline mutation had LOH 
at the PKD2 locus with a frequency of 0-12% and (milder) somatic 
PKD2 mutations were present in 15-64% of renal cysts [29-32]. In 
addition, these analyses showed that the majority of single renal cysts 
in ADPKD presented epithelial cell populations derived from 1 cell. 
These experiments fueled the idea that cysts consist of a monoclonal 
cell population build from a single cell affected by 2 hits [23,25]. 

Liver
Analysis of hepatic tissues (21 cysts) from 2 ADPKD patients that 

were PKD1 mutation carriers showed that the other allele was lost in 
both cases because of LOH (9%) or somatic mutations (29%) (Figure 
2 and Table 1) [33]. Another study in an ADPKD patient unlinked to 
PKD1, the healthy PKD1 allele in hepatic cyst epithelium was lost in 
20% because of LOH [28]. The situation was different in a PKD2 carrier. 
Somatic hits were detected in 1/13 (8%) cysts using classic intragenic 
and microsatellite marker analyses [30]. By contrast, direct Sanger 
sequencing studies at the somatic level in 71 cysts from PCLD patients 
(PRKCSH carriers) detected a LOH incidence of 76% at the PRKCSH 
locus [34]. This is different from SEC63 mutation carriers where SEC63 
LOH was present in 2% [35].

Figure 2: An overview of reported somatic hits in liver cyst tissues from PLD patients. Identification of LOH or somatic mutations in PKD1 or PKD2 in ADPKD 
[28,30,33], and in PRKCSH or SEC63 in PCLD [34,35] presented by a colored part per patient. Grey pieces represent no detected somatic hits in hepatic cysts.
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Identical to the situation in common tumors, the type of somatic 
mutations in PLD can be substitutions, small deletions or insertions 
leading to a missense change or premature stop mutation (Table 2) 
[30,33,34]. PCLD patients harboring a PRKCSH germline mutation are 
highly at risk for somatic mutational inactivation. Loss of the PRKCSH 
protein influences progression of hepatic cystogenesis. Therefore, it is 
possible that PRKCSH acts as a tumor suppressor gene.

Somatic Inactivation in Sporadic Hepatic Cysts
Sporadic cysts may arise as an incidental finding or as an acquired 

hepatic cyst from a traumatic or an infectious condition. Simple hepatic 
cysts occur in about ~10% of the general population and are frequently 
asymptomatic [6]. However, sporadic cysts may increase in volume and 
cause pressure on surrounding organs.

Germline mutations are required for cyst formation in congenital 
PLD, but are usually absent in individuals with a sporadic cyst. It is likely 
that loss of PLD genes occurs through somatic inactivation. Depending 
on the target tissue, loss of ADPKD alleles may lead to renal as well as 
hepatic cysts.[30,33]. This mechanism has not (yet) been identified in 
PCLD patients. 

A loss-of-function model could be hypothesized as a common 
molecular mechanism in PLD. Different mutation types, deletions or 
LOH of a region including a PLD gene has been stated, but LOH may be 
also the result of errors during meiosis I or II. In acquired uniparental 
disomy an individual received 2 chromosomes from 1 parent. This 

abnormal normal haplotype leads to disease in case this allele is non-
functional. The consequence of this gene conversion is that the patient 
carries a copy number neutral LOH. For example, LOH in combination 
with these mechanisms are detected in other benign tumors such as 
neurofibromatosis, but also in malignancy [22,24]. 

Protein Expression Levels in Liver Cyst Tissue
Immunohistochemistry analyses of gene products may indicate 

the presence or the expression level of proteins. Patients harboring a 
truncating heterozygous germline mutation usually have a second, wild-
type allele. Following the second hit hypothesis in PLD, this wild-type 
allele will be lost and no protein expression will be detected by staining 
experiments. Indeed, studies of liver cyst tissues from patients with a 
germline PRKCSH mutation demonstrated that the PRKCSH protein 
was absent in cyst epithelium, but Sec63p was expressed [34,36]. Vice 
versa, the cyst that harbored somatic LOH of SEC63 showed reduced 
expression of the Sec63p, but positive PRKCSH staining [35]. These 
findings suggest that both PCLD protein products do not interact. 

On the contrary, genetic studies in human liver cyst tissues from 
PKD2 affected patients [29,32] found that the majority represented 
polycystin-2 expression and equal polycystin-1 expression [37]. 
Molecular studies showed that polycystins interact by coiled-coil 
domains to form multimeric complexes. Interaction studies in ADPKD 
showed that polycystin-1 is a regulator of polycystin-2 activity in liver 
and kidneys [38]. This argues that PKD mutation carriers share the 
predominant phenotype of polycystic kidneys. 

PLD sample ID. Germline mutation(s)* Predicted protein effect Somatic mutation* Predicted protein effect Ref.
ADPKD1
JHU415 PKD1 c.12378C>G p.Tyr4126X PKD1 c.12551insGC p.His4185Argfs*13 [33]

ADPKD1
JHU452 PKD1 c.7165T>C

PKD1 c.9047A>G
-

p.Gln3016Arg

PKD1 c.8900C>G
PKD1 c.10050+2del20

PKD1 c.8558T>C
PKD1 c.7567G>T
PKD1 c.8733del16

p.Ser2967X
aberrant splicing 
p.Phe2853Ser
p.Glu2523X

p.Asp2912Argfs*77

[33]

ADPKD2
UT1500 PKD2 c.2152insA p.Asn720Lysfs*5 PKD2 c.710-8del19 aberrant splicing [30]

PCLD patient 1 PRKCSH c.1341-2A>G aberrant splicing PRKCSH c.224T>C
PRKCSH c.1499G>A

p.Phe75Ser
p.Cys500Tyr [34]

*TranscriptID. PRKCSH (NM_002743.2); PKD1 (L33243.1); PKD2 (NM_000297.2)
Table 1: Somatic mutations with the predicted effect on protein level in liver cyst tissue from PLD patients. Types of somatic hits included 5 substitutions, 3 deletions and 1 
insertion mutation at the similar gene locus (GRCh37-hg19). These mutations resulted in pathogenic mis-sense changes or truncated protein products. 

Study group Phenotype Patients germline mutation(s)* Hepatic cysts (n) Ref.
Watnick et al. 1998 ADPKD1 JHU415. c.12378C>G 12 [33]

ADPKD1 JHU452. PKD1 c.7165T>C and PKD1 c.9047A>G 9
Pei et al. 1999 ADPKD2 UT1500. PKD2 c.2152insA 13 [30]

Badenas et al. 2000 ADPKD1 3. Germline mutation not available 15 [28]
Janssen et al. 2011 PCLD 1. PRKCSH c.1341-2A>G 14 [34]

PCLD 2. PRKCSH c.1341-2A>G 12
PCLD 3. PRKCSH c.1341-2A>G 9
PCLD 4. PRKCSH c.1341-2A>G 9
PCLD 5. PRKCSH c.292+1G>C 5
PCLD 6. PRKCSH c.292+1G>C 13
PCLD 7. PRKCSH c.292+1G>C 7
PCLD 8. PRKCSH c.1341-2A>G 2

Janssen et al. 2012 PCLD 1. SEC63c.1703_1705delAAG 34 [35]
PCLD 2. SEC63 c.1703_1705delAAG 4
PCLD 3. SEC63 c.958G>T 14

*TranscriptID. PRKCSH (NM_002743.2); PKD1 (L33243.1); PKD2 (NM_000297.2)
Table 2: Overview of the number of hepatic cyst tissues per PLD patient for evaluation of somatic hits. An extended number of hepatic cysts in several patients have been 
analyzed in PCLD compared to ADPKD; n=71 cysts and n=52 cysts in PRKCSH and SEC63 affected individuals respectively. 
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Trans-heterozygous Model
The first hypothesis of a trans-heterozygous model was confirmed 

with experiments in renal cysts in a PKD1 affected ADPKD family. This 
study revealed that PKD1 germline derived cysts could have somatic 
PKD2 mutations [27]. Next, clonal PKD1 somatic hits were discovered 
in renal cysts from PKD2 carrier [31]. These observations demonstrate 
an alternative pathogenic mechanism for cyst formation. To date, the 
trans-heterozygous model has been excluded in PCLD. Co-existence of 
second hits at the PKD1 or PKD2 locus in PCLD may compromise the 
functional network in PLD [39,40].

Clinical Heterogeneity in Polycystic Liver Disease 
The liver phenotype of inherited PLD may range from a single or 

few cysts to an advanced polycystic liver with numerous cysts. Usually, 
several liver segments remain unaffected and the liver function is 
preserved, even in severe PLD [2,3].

Individual and inter-patient differences of cyst size, localization and 
growth suggest that other factors are involved in the pathogenesis. The 
type of somatic mutations may explain to some extent the individual 
variability. For example, the number and type of somatic mutation in 
the tumor suppressor gene APC has important implications on the 
protein function resulting in growth advantages of the cell [41].

As indicated, the diversity of clinical presentation in families is high. 
The penetration of the disease has been estimated at ~80% and even if 
the disease become penetrant, its variability is high [10]. Some affected 
family members may develop early and severe disease, while others 
only develop minor symptoms. This may occur among those sharing 
identical germline mutations. Although family history is frequently 
negative in PLD, an asymptomatic carrier can transmit the disease to 
offspring who may become affected.

PLD patients may be asymptomatic for many years. The number 
and size of hepatic cysts increase progressively by the age of 30 resulting 
in advanced disease in patients in their fifth decade [4]. This variation 
reminds us of the situation in retinoblastoma. An early-onset of disease 
could be explained by the high rate of a second hits in embryonic cells 
[19]. The mutation rate of the somatic hit determines the progression 
of the disease. It is likely that in PLD these somatic hits are the rate-
limiting step for PLD development.

Disease Model
Examination of the second hit model has afforded us insight in 

the molecular mechanisms of PLD. Genome-wide copy number and 
(copy number neutral) LOH regions from liver cyst tissues are of high 
interest, because these investigations may guide us to putative candidate 
genes for hepatic cyst formation. Next, LOH regions in cysts of target 
tissue (liver or kidney) may indicate modifiers or novel genes at the 
germline level which contribute to monoclonal hyperproliferation of 
cholangiocytes in congenital and sporadic cysts. 

It is likely that more disrupted gene products are involved in PLD, 
because multiple pathways and modifiers affecting cystogenesis are 
identified. These reasons might explain similarities and differences in 
clinical presentation. For example, the polycystins are functionally part 
of similar signaling pathways. A recent study in animal models provided 
functional evidence for presence of trans-heterozygous mechanisms in 
PLD. Reduced hepatocystin or Sec63p expression leads to hepatic and 
renal cystogenesis, but also affects the functional polycystin complex. 
These data provide evidence for a PLD protein network responsible for 

cystogenesis. Perturbation of polycystin-1 levels regulate the disease 
severity in a dosage-related fashion [39].

Concluding Remarks
The nature of individual cyst formation has been associated with 

genetic mechanisms that are common in tumorgenesis. For initiation 
and promotion of a malignant or benign tumor, more than 1 mutation 
is required [6,19]. In case of a hepatic cyst, both alleles of PLD-related 
genes are inactivated by a two-step process. The first hit is the inherited 
mutation present in the germline and the second hit is the onset of 
somatic events. Somatic hits can cover the spectrum from missense 
mutations to LOH. A fine example is the situation in liver cyst tissue 
from PRKCSH mutation carriers with a high LOH rate of 76% [34]. 

There is a high variability of liver phenotype in PLD patients that 
are of similar sex, age and share identical germline mutations. The focal 
character of intra-familial variability in PLD may be explained at least 
partially by genetic mechanisms at the somatic level. This paper lists the 
evidence supporting that inactivation of 2 PLD-gene copies underlies 
hepatic cyst formation.

Development of multiple fluid-filled cysts expands over time and 
affects the normal biliary architecture. These processes are influenced 
by age, gender (hormones), somatic hit rate and frequency, but probably 
also a significant dosage effect through accumulation of multiple 
mutations [18,39,40]. 

The genetic threshold is low in inherited PLD because there exists 
already loss of 1 allele. On the other hand, somatic inactivation of 2 
PLD alleles is also possible and in those cases isolated cysts arise. Both 
modes result in clonally proliferation, growth and individual cyst 
formation.
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