Some Implications of Mathematical Analyses of Epidemics

Joel K Weltman*
Department of Medicine, School of Medicine, Alpert Brown University, Providence, RI, 02912, USA

Keywords: Epidemics; Influenza; Dynamic systems; Chaos; Quasispecies; Logistic; Sigmoidal

Introduction

Mathematical analysis is a powerful tool that facilitates conceptualization and understanding of epidemics of infectious diseases [1]. The time-course of cumulative case count in epidemics is well-described by the sigmoidal shape of discrete and continuous logistic functions. For example [2], the Pearson coefficient ‘r’ for correlation between the observed cumulative sequence count and the computed values of logistic-type functions varied from a minimum of 0.9495 to a maximum of 0.9991 for pandemic influenza A (H1N1) pdm09 (pH1N1) hemagglutinin (HA) sequences collected at 23 geographic locations distributed world-wide (p<2.22e-16 at each location). A normalized version of this logistic function is given below as equation 1:

\[Y = \frac{1}{1 + e^{-at}} \]

(1)

The fourth and fifth derivatives (\(Y''''\) and \(Y'''''\)) of \(Y\) shown in figure 1 are of the type of “jerk”, “jounce” and “swing” functions associated with turbulence of fluid flow, instability of electrical circuits and irregularity of pendulum motion [4,5]. Furthermore, it has been reported that chaotic regions have been detected in SIS ODE epidemic models [6]. The biological significance of these mathematical disturbances of evolutionary trajectory remains to be determined.

Acknowledgments

Brown University Center for Computing and Visualization (CCV) for provided computer facilities and ancillary support for this research. Brown University Center for Computational Molecular Biology (CCMB) provided their support.

References

*Corresponding author: Joel K Weltman, Department of Medicine, School of Medicine, Alpert Brown University, Providence, RI, 02912, USA, E-mail: joel_weltman@brown.edu

Received October 15, 2012; Accepted October 16, 2012; Published October 18, 2012

Copyright: © 2013 Weltman JK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Figure 1: Time-Dependence of a Continuous Logistic-Function and its Derivatives.
Values of the logistic function (Y) and the first five of its derivatives with respect to time (Y', Y'', Y''', Y'''', Y'''''') are on the ordinates. Time is denoted on the abscissas. The function (Y) is given in equation 1. Parameter (a) was varied from 0.0 to 2.0 in increments of 0.1. Time derivatives of equation 1 were obtained with Maple 15.01 (Maplesoft, a division of Waterloo Maple, Inc.). Graphs were plotted with Python 2.7.3 (EPD 7.3-1 (64-bit)), SciPy and matplotlib.