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Introduction
Mathematical analysis is a powerful tool that facilitates 

conceptualization and understanding of epidemics of infectious diseases 
[1]. The time-course of cumulative case count in epidemics is well-
described by the sigmoidal shape of discrete and continuous logistic 
functions. For example [2], the Pearson coefficient ‘r’ for correlation 
between the observed cumulative sequence count and the computed 
values of logistic-type functions varied from a minimum of 0.9495 to a 
maximum of 0.9991 for pandemic influenza A (H1N1) pdm09 (pH1N1) 
hemagglutinin (HA) sequences collected at 23 geographic locations 
distributed world-wide (p<2.22e-16 at each location). A normalized 
version of this logistic function is given below as equation 1:

Y = 1/(1 + e-at)   (1)

The fourth and fifth derivatives (Y’’’’ and Y’’’’’) of Y shown in figure 1 
are of the type of “jerk” , “jounce” and “swing” functions associated with 
turbulence of fluid flow, instability of electrical circuits and irregularity 
of pendulum motion [4,5]. Furthermore, it has been reported that 
chaotic regions have been detected in SIS ODE epidemic models [6]. 
The biological significance of these mathematical disturbances of 
evolutionary trajectory remains to be determined.
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Plots of values of Y and its first 5 derivatives with respect to 
time (t) are shown in figure 1 with parameter (a) varying from 0 to 
2.0. The results of variation of the non-linear parameter (a) in figure 
1 reflect a framework for conceptualization and modeling a smooth 
flow of mutant subsets, probabilistically produced as quasispecies [3] 
and moving those quasispecie mutants through space and time in 
laminas of evolutionary viral trajectories. Because of their simplicity 
and goodness-of-fit to the observed data, logistic and other sigmoidal 
functions are useful components of differential and difference equations 
for the analysis of influenza and other infectious epidemics.
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Figure 1: Time-Dependence of a Continuous Logistic-Function and its Derivatives.
Values of the logistic function (Y) and the first five of its derivatives with respect to time (Y’, Y’’, Y’’’, Y’’’’, Y’’’’’) are on the ordinates. Time is denoted 
on the abscissas. The function (Y) is given in equation 1. Parameter (a) was varied from 0.0 to 2.0 in increments of 0.1. Time derivatives of equa-
tion 1 were obtained with Maple 15.01 (Maplesoft, a division of Waterloo Maple, Inc.). Graphs were plotted with Python 2.7.3 {EPD 7.3-1 (64-bit)}, 
SciPy and matplotlib.
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