Rui Lin received his Ph.D. from Cornell University. He completed his postdoc work in UC San Francisco and Genentech. His past work included signal transduction and anti-angiogenesis research, drug discovery and biomarker studies. He is currently a Scientist in Translational Medicine at MedImmune working on vaccine and monoclonal therapeutic antibodies.


Neutralizing antibodies against viruses represent a major mechanism of host protection against viral infections. Most if not all marketed vaccines elicit neutralizing antibodies. Currently, neutralizing anti-viral therapeutic monoclonal antibodies are being developed for the treatment and/or the prevention of viral diseases. Standard neutralization assays to assess the viral neutralization activities of antibodies have historically been functional plaque assays. Plaque assays are time-consuming, laborintensive and challenging to implement in clinical studies especially those involving a large number of patients. Here we described the development and implementation of fast and robust Fluorescent Foci (FFA)-based microneutralization (MN) assays. These assays, using viruses expressing enhanced green fluorescence protein (EGFP), allow for higher throughput, better precision, and shorter assay turn-around time making them suitable for use in large clinical studies. We will first describe the establishment of a novel FFA-based MN assay to detect and quantify neutralizing antibodies against EBV. This assay uses EBV-GFP and an engineered epithelial cell line. All assay conditions impacting assay performance were optimized and the assay was automated using liquid handling and high-content imaging systems. The robustness and precision of the optimized assay were demonstrated using serum samples from mice, rabbits and humans (n > 600). In addition, a companion EBV-specific IgG ELISA assay was developed. Significant correlation (r2 = 0.89) between both assays was demonstrated using 358 rabbit serum samples. A MN assay was similarly developed for Respiratory Syncytial virus (RSV) to support the development of MedImmune’s anti-RSV therapeutic mAbs and RSV vaccine candidates. The 2-year assay control trending of RSV MN assay will be presented to demonstrate the robustness and precision of this assay.

Speaker Presentations

Speaker PDFs