Keerat Kaur is currently a PhD student in Department of physiology at New York Medical College, NY. she have completed her undergraduate and master degree in the field Human Genetics from Guru Nanak Dev University, Amritsar, India. Presently, she is working on the project entitled ‘Examining pharmacological approaches for enhancing the cardiac regenerative capacity of adult stem cells’. In the ongoing project, she is trying to characterize the benefits of pharmacological treatments for enhancing the potential of adult tissue- derived stem cells to form myocardial tissue. As, stem cell therapy has been widely accepted for its ability to give rise to differentiated cells, we are constantly developing new culture conditions that would allow to enhance the number of stem cells and also differentiate them into mature cardiac tissue. In the second project, she is examining the capability of human bone marrow cells to produce functional cardiomyocytes which can later become a source of fully differentiated cells for transplantation. The long term goal of her study is to focus on procedures that would allow the adult stem cells as a real target for clinical management.


Stem cell therapy has been widely used in attempts to repair and regenerate the diseased heart. Since the heart does contain endogenous cardiac progenitor cells (CPCs), heart tissue itself has served as a stem cell source for cardiac repair. Impediments in using CPCs for treating human patients are that the cells are present in low numbers within the heart and require heart biopsies, which may not be efficacious for severely diseased individuals. Two major objectives in optimizing the therapeutic utility of CPCs are to enhance their cardiac regenerative capacity and expand their numbers without sacrificing their cardiac competency. Our laboratory has focused on utilizing pharmacological approaches for promoting the myocardial potential of adult stem cells. Two of the drugs we have investigated are the DNA demethylation reagent 5-azacytidine and the G9a histone methyltransferase inhibitor BIX01294.