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Abstract
Objectives: The aim of this study was to investigate linear and nonlinear properties of tremor time series. To 

this end, we applied linear (second order) and nonlinear (higher order) spectral and cross-spectral analysis to 58 
Electroencephalographic (EEG) and Electromyographic (EMG) tremor recordings of seven essential and five 
Parkinsonian Tremor patients.

Methods: Second and third order spectral analysis was performed on two types of data. First, data was simulated 
from a model mimicking the nonlinear properties of the tremor time series. Limitations of linear second order spectral 
analysis are illustrated in those simulations. Those limitations can be overcome by nonlinear third order spectral 
analysis. Second, tremor recordings from the trembling hand and contralateral motor area of the brain of the tremor 
patients were analyzed both by second and third order spectral analysis.

Results: Linear spectral analysis suggested nonlinearity of dynamics and interactions of processes measured 
by EEG and EMG. Applying bispectral analysis those nonlinearities were investigated. We found that a measure for 
nonlinearity based on bispectra was significant for most EMG recordings, as well as for the interaction of EEG and 
EMG.

Conclusions: Linear spectral analysis is a powerful tool when assessing spectral properties of time series. 
However, linear techniques fail to reveal nonlinear couplings. In the application of nonlinear spectral analysis to tremor 
time series, we showed that the dynamics of the hand muscle as well as the interaction of hand muscle and brain are 
governed by nonlinearities.
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Objective
A powerful tool for the reconstruction of process properties from 

measured data is spectral analysis [1]. Univariate spectral analysis 
quantifies the frequency content of each process. Bivariate spectral 
analysis quantifies the interaction of two or more processes, revealing 
functional connectivity [2]. Mostly, linear spectral analysis is applied, 
specifically the auto-spectrum in the univariate case and the coherence 
in the bivariate case [3-5]. An auto-spectral peak reveals that a process 
oscillates at the frequency at which the peak occurs. Peaks in the 
coherence spectrum reveal a linear interaction of two processes at the 
peak frequency. Strictly speaking, linear spectral analysis is restricted 
to revealing linear properties of a process. Nonlinear properties of the 
processes, such as quadratic phase coupling, must be investigated by 
nonlinear spectral analysis. As we show, higher harmonic spectral peaks 
cannot be distinguished from peaks which occur due to an independent 
sub-process by linear analysis. Thus independent sub-processes may be 
erroneously postulated, when truly nonlinear couplings are present.

A solution to this has been provided in the 1960s in terms of the 
extension of linear or second order spectral analysis to higher orders 
[1,6]. The latter enables quantification of higher order properties. Third 
order spectral analysis, e.g., quantifies non-gaussianity and quadratic 
phase couplings within processes [1,6]. By means of third order spectral 
analysis, higher harmonics can be revealed.

Despite its benefits, higher order spectral analysis has remained 
limited in its influence onto the neurosciences [7,8]. Especially bivariate 
higher order spectral analyses for the quantification of nonlinear 
couplings of different brain areas [9] or coupling of the brain and limbs 
are rare. In this article, we apply, for the first time to our knowledge, 

both linear and nonlinear spectral analysis to investigate univariate and 
bivariate properties of the motor area in the brain and the muscles of 
trembling limbs of a cohort of tremor patients.

Tremor is defined as involuntary rhythmic movements of distinct 
body parts, predominantly the upper limbs. Oscillatory neuronal 
activity in the brain network generates the trembling of the limbs. 
Neuro-degenerative diseases, structural brain abnormalities, or toxic-
metabolic conditions may lead to different forms of tremor. Common 
causes for limb tremor are Parkinson’s disease or essential Tremor.

An interaction of neural and muscle activity - inferred based on 
the Electroencephalogram (EEG) and Electromyogram (EMG) data - 
at the tremor frequency is expected, if neural malfunction is the cause 
of trembling muscles [10]. This is reflected in an EMG-EEG coherence 
peak at the tremor frequency [3]. Coherence peaks at twice the tremor 
frequency have been observed and interpreted - based on linear 
spectral analysis - as independent from the tremor-based peaks at the 
tremor frequency [11]. However, such peaks are not distinguishable 
from higher harmonics by second order spectral analysis.

Journal of
Clinical and Experimental PharmacologyJo

ur
na

l o
f C

lin
ica

l & Experimental Pharm
acology

ISSN: 2161-1459



Citation: Mader M, Klatt J, Amtage F, Hellwig B, Mader W, et al. (2014) Spectral and Higher-Order-Spectral Analysis of Tremor Time Series. Clin Exp 
Pharmacol 4: 149. doi:10.4172/2161-1459.1000149

Page 2 of 9

Volume 4 • Issue 2 • 1000149Clin Exp Pharmacol
ISSN: 2161-1459 CPECR, an open access journal

Advancements in CNS Neuroscience & Therapeutics

In a simulation study based on a model of coupled sinusoids we 
show that peaks similar to the ones occurring in tremor data can be 
higher harmonics. They can be detected by the third order spectral, 
i.e., bispectral, analysis. Applying bispectral analysis to EEG data 
from the motor area of the brain and EMG data from the muscles of 
the trembling hand of the tremor patient we uncovered that tremor is 
governed by nonlinear processes and interactions. We found that most 
coherence peaks at twice the tremor frequency are caused by higher 
harmonics rather than independent processes.

The article is organized as follows. In material and methods, the 
data of the study is introduced (in material) and methods of spectral 
analysis are summarized (in methods). To this end, first linear (in linear 
spectral analysis) and nonlinear (in nonlinear spectral analysis) spectral 
analysis is reviewed. The power of their combination is investigated in 
a simulation study (in combination of linear and nonlinear spectral 
analysis). In results, the results of linear (in linear spectral analysis of 
tremor data) and nonlinear (in nonlinear spectral analysis of tremor 
data) spectral analysis of the tremor data are shown. We conclude with 
a discussion of our findings in conclusion.

Material and Methods
In the first part of this section we summarize the properties of the 

data and exclusion criteria for the analysis. In the second part linear and 
nonlinear spectral analysis are summarized.

Material

Tremor data was recorded in 2-5 min segments from seven patients 
with Essential Tremor (ET) and five patients with Parkinsonian 
Tremor (PT). Each segment consisted of the rectified EMG of a 
patient’s trembling wrist muscle and the contralateral surface EEG of 
the motor area of the brain. The wrist muscles, from which the EMGs 
were recorded, were extensor and flexor. The surface EEG-electrodes 
contralateral to the trembling hand were the C3 (left) and the C4 (right) 
electrodes, respectively. For each patient three to six such segments of 
simultaneous EEG and EMG were recorded. For patients with bilateral 
tremor, recordings from left and right wrist muscles were recorded. 
Segments without clear tremor in the EMG were excluded, leading to 
58 segments, 30 of which were from ET, 28 from PT patients. For more 
details of the patients and selection criteria, see [12,13]. The data are 
available for download [14].

Methods

Spectral analysis is one of the most frequently applied tools in data 
analysis. It quantifies linear and nonlinear properties of a process in 
the frequency domain. Its application to medical data ranges back to 
the 1940s [1], when the foundation of linear spectral analysis was laid 
[6,15]. Linear spectral analysis is the most frequently applied type of 
spectral analysis. It quantifies the linear properties concerning the 
frequency content of the investigated processes. Nonlinear extensions 
have been developed in the 1960s [1,6,16]. The two types of spectral 
analysis are summarized in Sections (linear spectral analysis) and 
(nonlinear spectral analysis).

Both linear and nonlinear spectral analysis may be subdivided into 
univariate and bivariate analysis tools [1]. Univariate spectral analysis 
quantifies the spectral properties of a single process, while bivariate 
spectral analysis quantifies interaction of two or more processes in 
the frequency domain. The subsequent summary follows [1], if not 
indicated otherwise.

Linear spectral analysis: For the sake of simplicity, we here 

consider two zero-mean processes x1 (t) and x2 (t). The auto-spectrum 
of xi (t), i=1, 2 is
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It is proportional to the Fourier transform of the auto-covariance 
vari (τ)=E [xi (t) xi (t + τ)] of the process xi at time lags τ. The E [.] 
denotes the expected value.

The cross-spectrum
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of the two processes x1 and x2 is given by the Fourier transform 
of the cross-covariance 12 1 2cov ( ) = E[x (t)x (t + )]τ τ . It is the bivariate 
generalization of the auto-spectrum. The amplitude of the cross- and 
auto-spectrum quantifies the covariance of the sub-processes at a given 
frequency ω.

Normalization of the absolute value of the cross-spectrum by the 
auto-spectra of the two processes, yields the coherence,
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It quantifies linear interaction of two sub-processes. The coherence 
attains its maximum value 1 at frequency ω if x1 is a linear function of x2 
at that frequency. The minimum value 0 is attained if the sub-processes 
are independent of each other.

In applications, the process itself is unknown. Respective spectra 
have to be estimated from measured data x (j), instead. Here, j refers 
to time t = j t∆�  when sampled at a sampling frequency 1

t∆
. For the 

estimation, the data of length N is cut into m independent segments 
of length L=N / m, which is rounded off in case N / m is no integer. 
Each segment is tapered in order to reduce leakage of power into 
neighboring frequency bins in the frequency domain. To this end, the 
data is multiplied by special windowing functions (for review, see [17]. 
We used a raised cosine as windowing function with taper parameter

1
32 ). The periodograms ( 1 2x  = x ) and cross-periodograms ( 1 2x x≠ ),
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of each tapered segment of data xa1
 and xa2

 are computed, squared 
and averaged. In case of the periodogram a1=a2=1, 2, while in case 
of the cross-periodogram a1=1 and a2=2, or vice versa. This yields an 
asymptotically consistent estimate of the respective spectrum [1,6,17].

Nonlinear spectral analysis: The idea of nonlinear, i.e., higher 
order, spectral analysis is to generalize the definition of the spectrum, 
Equation (1), by Fourier transforming k-th order moments

1 k 1 2 ka ,....,a  1 k-1 a a 1 a k-1cov ( ,...., ) = E[x (t) ... x (t + )...x  (t + )].τ τ τ τ         (5)

Since here we consider only two processes x1 and x2, the indexes a1,…, 
ak are either 1 or 2, depending on whether auto- or cross-covariances 
are considered. The k-th order moment, Eq. (5), of the two processes 
x1, x2 are considered at different time lags j , j = 1,..., k-1τ , in contrast 
to only one lag as for the second order covariance 12cov ( ),τ  which 
in the univariate case is the auto-variance ivar ( ), i = 1, 2τ . For k=2, 
the Fourier transform of the second order moment yields second order 
spectra, auto- or cross-spectrum for 1 2x  = x  or 1 2x x≠ , respectively, 
in Equations (1) and (2). For k=3, the Fourier transform of Eq. (5) 
results in a third order spectrum, the bispectrum,
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where the indexes a1, a2, a3 denote the indexes 1, 2 of the processes 
x1, x2 used in the covariance obtained from Eq. (5). There are eight 
triple-combinations of 1 and 2 yielding a set of eight bispectra: 
First of all, there are two auto-bispectra B111 and B222, which are 
symmetric in their frequencies. Second, there are six cross-bispectra 

112 221 212 122B , B , B  = B' , and 121 211B = B' , where .( )'  denotes transposition. 
This yields six independent auto- and cross-bispectra, since some of the 
cross-bispectra are the transposed of others.

The bispectrum 
1 2 3

Ba a a  quantifies the coupling of processes xa1 at 
frequency ω1 and xa2

at ω2 onto xa3
 at ω3=ω1 + ω2. Within this article, only 

the absolute value of the bispectrum is considered.

Since in applications the true bispectra 
1 2 3

Ba a a are unknown, they 
are estimated. Averaging and taking the squared of the respective 
biperiodogram
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of  m=N/L blocks of tapered data with sub-process indexes a1, a2, 
a3 as listed in the eight possibilities of bispectra above, i.e., 111, 112 etc. 
Estimation thus is analogue to the linear case in linear spectral analysis. 
It yields a consistent estimate [16].

The bispectrum is sensitive, both to nonlinearity and non-
Gaussianity. To ensure that a rejection of the null hypothesis is due to 
nonlinearity rather than non-Gaussianity, any data within this article 
was transformed to follow a Gaussian distribution prior to spectral 
analysis. To ensure Gaussian distribution of the data x(1),…, x(N), N 
Gaussian random numbers z(1), . . . , z(N) were drawn. Both x and z 
were sorted according to their value, yielding x  and z . Then x( )i  and 
z( )i  were assigned to each other, such that x( ) z( )i i= . An original data 
point x(j), being the i-th highest value in x, x( )i  was thus substituted by 
the i-th highest Gaussian random number, z( )i .

Kim and Powers introduced a normalized estimated version of the 
bispectrum, the bicoherence [18]

                            (8)

It is estimated by averaging biperiodograms 
1 2 3

Pa a a  to obtain an 
estimate of the bispectrum ( )1, 21 2 3

B̂a a a ω ω  in the numerator, as well as 
averaging periodograms denoted by .[ ]E in the denominator. Similar to 
the coherence in the linear case, the bicoherence is normalized to values 
between zero and one. However, other than the coherence, which is 
restricted to the bivariate case, the bicoherence exists for the univariate 
case, as well. In the univariate case, the auto-bicoherence (a1=a2=a3, i.e., 
B111 or B222) refers to nonlinear self-coupling of a single process. The 
cross-bicoherence (B112; B212 etc.) quantifies nonlinear interaction of 
two processes x1 and x2 in the bivariate case.

In order to test for the statistical significance of bicoherence, 
block-bootstrap may be employed [19,20]. To this end, first the 
data is segmented into a set of m independent segments. Second, m 
segments are drawn randomly with replacement from this set, yielding 
a bootstrap realization for which the null hypothesis of independence 
applies. Independence refers to absent self- and cross-coupling. Third, 
for each block of the bootstrap realization the periodograms and 
biperiodograms of interest are derived. Fourth, the periodograms 
and the biperiodograms of all m segments are squared and averaged 
yielding estimates of the bicoherence of the bootstrap realization 
according to Eq. (8). This procedure is repeated r times, in order to 
generate r bootstrapped bicoherences. Fifth, empirical histograms of 
the bicoherences of all r bootstrap realizations at a given frequency are 

compiled. Finally, for a given significance levelα , the 1-α  quantile 
is considered the critical value. This refers to the .α  r-th highest 
bootstrapped bicoherence value. If the bicoherence of the original data 
exceeds the critical value, the original bicoherence value exceeds zero, 
significantly.

Note that the null hypothesis of independence needs to be fulfilled 
in the bootstrap-realizations. In the case of cross-bicoherence, this is 
ensured by drawing random segments from the data of the considered 
processes at different time points. In the case of auto-bicoherence, this 
is achieved by ensuring segments of independent time points within 
the data. For all statistical tests within this article, we performed the 
block-bootstrap as outlined with 20 bootstrap samples and tested for a 
significance level of α =5%. Thus, if a bicoherence value derived from 
the data exceeded the highest bicoherence value obtained from the 
bootstrap samples, the bicoherence was considered significant with an 
error rate of 5%.

Combination of linear and nonlinear spectral analysis: In order 
to illustrate the power of bispectral analysis, consider the sinusoidal 
model [1]

1 1 1 1 2 2 2 3 3 3x (t) = C  sin( t + (t)) + C  sin( t + (t)) + C  sin( t + (t));ω η ω η ω η       (9)

2 1 1 1 2 2 2 3 3 3x (t) = D sin( t + (t)) + D sin( t + (t)) + D sin( t + (t));υ ξ υ ξ υ ξ           (10)

with respective frequencies ω and υ, uniformly distributed random 
phases ηi (t) and ξi (t), as well as amplitudes Ci and Di for i=1; 2. Phases 
η3, ξ3, and frequencies ω3, υ3 represent coupling as described in the 
following. An auto-bispectral peak in B111 at the frequency-tuple (ω1, 
ω2) occurs if the sine functions of x1 are phase-locked, i.e., both ω3=ω1 
+ ω2 and η3 (t)=η1 (t) + η2 (t) hold. A cross-bispectral peak B122 (ω1, υ2) 
occurs if frequencies and phases are locked according to ω1 + υ2=υ3 
and ( ) ( ) ( )1 2 3t + t = tη ξ ξ . On the contrary, no peak occurs in the cross-
bispectrum B112 (ω1, ω2), if 1 2 3(t) + (t) (t).≠η η ξ

To assess the limits and power of spectral and bispectral analysis, 
two settings were investigated: bispectral self-coupling, ω3=ω1 + ω2 
and η3=η1 + η2, and bispectral cross-coupling, ω3=ω1+ υ2 and η3=η1+ ξ2. 
Within all simulations, we used m=120 blocks of length L=2500 data 
points for spectral estimation.

In order to investigate auto-bispectral properties, a realization of 
process x1(t) of Equation (9) with C1=C2=C3=1 was simulated. Gaussian 
white noise of variance 25 was added to simulate measurement noise, 
which is present in most applications. This yielded a signal to noise 
ratio of approximately one. The frequencies were ω1=4 Hz, ω2=9 Hz 
and ω3=13 Hz. The phases η1,2 were chosen randomly from a uniform 
distribution on the interval [0, 2π]. Random phase-shifts η were drawn 
for each segment, however, phase shifts remained constant within 
each segment for which the periodograms and biperiodograms were 
computed.

Auto-bispectral coupling was simulated by phase coupling

3 1 2= + .η η η                                                                                                (11)

Accordingly, the estimated auto-bicoherence had a peak at the 
frequency tuple (4 Hz, 9 Hz), see Figure 1(a). Note that the auto-
bispectrum is symmetric with respect to the angle bisector. Without 
phase-coupling but independent random phases η3, no such peaks 
occurred, as shown in Figure 1(b). While in case of phase-coupling (a), 
the auto-bispectrum is significant at the oscillation frequency, it is not 
in case of absent coupling (b).

Analogously, the bicoherence can be assessed for two identical 
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frequencies ω1=ω2, instead of two different ones, as above. The 
auto-bicoherence then resolves whether an oscillation at ω3=2ω1 is 
independent or occurs due to phase coupling induced by nonlinearities, 
leading to a higher harmonic. Similarly, the cross-bicoherence 
quantifies phase-coupling of two processes as modeled by the functions 
of sinusoids (Equations (9) and (10)).

In the second setting, we simulated such cross-coupling with 
identical frequencies ω1=ω2=υ1=υ2=4Hz and independent random 
phases η1,η2,ξ1,ξ2, respectively. The third components of both processes 
x1 and x2 were modeled as sines at the frequencies ω1+ υ2=ω3 and υ1+ 
υ2=υ3. Only process x2 coupled into the phase of process x1, such that 
the phase of x1 was

3 1 2= + .η η ξ                                                                                                     (12)

The phase ξ3 of process x2 was independent uniformly distributed 
noise. Since the signal to noise ratio does not need to be of the same 
order in both processes, the variance of the observational noise of 
x2 was reduced to one and amplitudes were set C1=C2=D1=D2=D3=1 
with coupling amplitude C3=3. This yielded a signal-to-noise-ratio 
of approximately one for sub-process x1 and 26 for x2. The coherence 
exhibited clear peaks (Figure 2) at both 4 and 8 Hz. Due to the three 
times higher amplitude C3 of the coupling term in process x1, the 
coherence peak was higher at 8 than at 4 Hz. Cross-bispectral analysis 
correctly revealed a higher harmonic at 8 Hz due to a significant peak 
in the cross-bicoherence Bcoh121, Figure 3(a). None of the other cross-
bicoherences (Figure 3(b-d)) or auto-bicoherences was significant at 
the oscillation frequency.

In order to evaluate the power of the statistical test for bicoherence 
based on block-bootstrap, we simulated 100 realizations of the 
sinusoidal model, Eqs. (9) and (10), for both auto- and cross-couplings 
for increasing coupling strengths. Figure 4 shows the percentage 
of significant phase auto-couplings (a) and cross-couplings (b) for 
increasing coupling strengths C3. The size of the test is correct, such that 
according to the significance level (black, dotted), only 5% false positive 
conclusions occur when no coupling, C3=0, exists. The steep increase 
with coupling strength for all scenarios shows that present couplings 
are detected reliably.

To summarize, bispectral analysis is capable of revealing higher 
harmonics both in the univariate and bivariate case. Our simulations 

Figure 1: Auto-bicoherence of a sinusoidal process as in Eq. (9) with (a) and 
without (b) phase coupling (Eq. (11)). In the case of present phase-coupling 
at frequency ω1=4 Hz and ω2=9 Hz (a), the auto-bicoherence exhibits a clear 
peak, which is significant. For absent phase-coupling (b) no peak occurs, the 
auto-bicoherence is not significant.

Figure 2: Coherence of two processes according to Eqs. (9) and (10) with 
phase coupling from x2 onto x1 (Eq. (12)).

Figure 3: Cross-bicoherence of a sinusoidal set of two processes as in 
Eqs. (9) and (10) with nonlinear phase coupling (Eq. (12)) from x1 and x2 
onto x1, only. Only a peak in the cross-bicoherence Bcoh121 occurs at the 
oscillation frequency of 4 Hz (a). Other cross-bicoherences at (4 Hz, 4 Hz) are 
insignificant (b-d).

Figure 4: Power of the statistical test of auto-bicoherences in case of auto- (a) 
and cross-coupling (b) of increasing coupling strengths (x-axes). For absent 
coupling, the test obeys the significance level of 5% (black, dotted), since the 
percentage of rejections of the null hypothesis is approximately 5%.
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showed that due to such higher harmonics larger values of the coherence 
at twice the oscillation frequency are possible. 

Results
We investigated second (in linear spectral analysis of tremor data) 

and third order spectral properties (in nonlinear spectral analysis of 
tremor data) of the tremor data. We Gaussianized the data as described 
in combination of linear and nonlinear spectral analysis prior to spectral 
analysis. For the statistics based on block-bootstrap, the data was divided 
into segments of L=2500, 5000, 10000 data points, corresponding to 2.5, 
5 or 10 seconds. Those block lengths were chosen such that successive 
segments were independent based on the correlation structure given by 
the autocorrelation function. Details about the block length selection 
are given in Appendix A (Figure 5). Results of linear and nonlinear 
spectral analysis are given in Tables 1 and 2.

Linear spectral analysis of tremor data

Linear spectral analysis was applied to all 58 segments included in 
this study. An exemplary set of EEG (a) and EMG (b) data as well as the 
respective estimated spectra (b,d) are shown in Figure 6. All segments 
exhibited auto-spectral peaks in the EMG. In each segment, the tremor 
frequency was defined as the lowest frequency in the range of 4 to 8 Hz 
at which the auto-spectrum of the EMG had a clear peak.

Based on auto- and cross-spectral analysis of the EEG and EMG 
recordings, the segments were categorized in three major groups. 
Group A and B were distinguished from group C as to whether auto-

spectral and cross-spectral peaks at the tremor frequency and twice the 
tremor frequency were consistent. A segment was denoted consistent 
if both the frequency of the second auto-spectral peak deviated less 
than 0.5 Hz from twice the tremor frequency, and the first coherence 
peak deviated less than 0.5 Hz from the tremor frequency. Otherwise a 
segment was denoted inconsistent. Group C contains two patients with 
at least one inconsistent segment, while group A and B contained only 
consistent segments.

Group A and B were distinguished from each other by the existence 
of a cross-spectral peak at twice the tremor frequency. While group 
A contained segments without coherence peaks at twice the tremor 
frequency, group B contained segments with such peaks. Group A 
consisted of 16 segments of six ET patients, group B consisted of 33 
segments of four ET and four PT patients. All but one segment (* in 
Table 1) of group B exhibited a coherence peak not only at twice the 
tremor frequency but also at the tremor frequency. In nine of these 33 
segments, the coherence peak at twice the tremor frequency was larger 
than the one at the tremor frequency. As simulated by the sinusoidal 
model described in Section (combination of linear and nonlinear 
spectral analysis), this higher coherence peak at twice the tremor 
frequency can be modeled by a strong bispectral coupling onto the 
target process, which however can be quantified by bispectral analysis, 
only. While group A only consisted of segments of ET patients, the 
fraction of ET segments (11 of 33) in group B was considerably lower 
than that of PT segments (22 of 33).

All segments of consistent PT patients were in group B. However, 
out of all consistent ET patients only one was exclusively assigned to 
group A. All segments of the other five consistent ET patients were 
assigned to both groups A and B.

Group C contained six segments of one PT and three segments 
of one ET patient. Five of those nine segments were inconsistent with 
respect to tremor and twice the tremor frequency, four of which from 
the PT patient (patient 11 segments 1-4), the other one from the ET 
patient (patient 12 segment 2). In two of the six PT-segments (segment 
1-2), the second coherence peak occurred at 1 Hz higher than twice 
the tremor frequency. In two other segments (segment 3-4), the first 
coherence peak occurred at the tremor frequency but the second 
peak occurred at a more than 1 Hz higher frequency than twice the 
tremor frequency. From the ET patient, two segments were consistent 
(segment 1 and 3). The first coherence peak in the inconsistent segment 
(segment 2) was at a more than 0.5 Hz lower frequency than the tremor 
frequency.

As described in the next section, we performed nonlinear spectral 
and cross-spectral analysis of the EEG and EMG to investigate the 
interaction properties of tremor and twice the tremor frequency.

Nonlinear spectral analysis of tremor data

The EEG-EMG segments of the three groups specified by linear 
spectral analysis were further investigated by bicoherence analysis. 
A bicoherence peak was considered significant if the critical value 
(significance level α=5%) from 20 bootstrap realizations was exceeded. 
We evaluated the auto- and cross-bicoherences at the tuple (tremor 
frequency, tremor frequency). Results are summarized in the above 
mentioned Table 1 for group A and B and Table 2 for group C. Figure 
7 shows the auto- (a-b) and cross-bicoherences (c-f) of one patient, 
exemplarily. For brevity, we denoted the cross-bicoherence significant 
whenever one of the cross-bicoherences as exemplarily shown in Figure 
7 was significant at the respective frequencies.

Figure 5: Autocorrelation functions of three exemplary segments of EMG 
data of tremor 1 patients. The time after which the autocorrelation function 
is decayed determines the block lengths L=2.5 s (a, patient 2 segment 2), 5 
s (b, patient 3 segment 3), or 10 s (c, patient 8 segment 2) used for spectral 
estimations.

Figure 6: Exemplary set of data of EEG (a) and EMG (c) recordings, displayed 
for the first second of recordings of patient 1 segment 1. Their estimated auto-
spectra are shown in (b) and (d).



Citation: Mader M, Klatt J, Amtage F, Hellwig B, Mader W, et al. (2014) Spectral and Higher-Order-Spectral Analysis of Tremor Time Series. Clin Exp 
Pharmacol 4: 149. doi:10.4172/2161-1459.1000149

Page 6 of 9

Volume 4 • Issue 2 • 1000149Clin Exp Pharmacol
ISSN: 2161-1459 CPECR, an open access journal

Advancements in CNS Neuroscience & Therapeutics

Auto-bicoherences of all but two rectified EMG-segments were 
significant at the tremor frequency. The two insignificant auto-
bicoherences occurred in segments of group C. They both occurred 

in consistent segments (patient 11 segment 6 and patient 12 segment 
3). On the contrary, the auto-bicoherences of EEG segments were 
insignificant at the tremor frequency in all but six segments. Thus, 

ID Type Seg Side Muscle TF(Hz) Group BL(s) BE BM XB1 XB2 XB3 XB4
1 ET 1 L E 7 B 2.5 0 1 1 1 0 0
  2 R E 4.2 A 2.5 0 1 1 1 1 0
  3 L E 5.4 A 2.5 0 1 0 0 0 0
3 ET 1 R F 5.9 A 10 0 1 1 1 0 0
  2 R E 5.9 A 5 0 1 0 1 0 0
  3 R F 5.9 A 5 0 1 0 1 0 0
3 ET 1 R E 5.6 B 5 0 1 0 0 1 0
  2 L F 5.3 B 5 0 1 0 1 1 1
  3 R F 5.6 B 5 0 1 0 0 1 0
  4 R E 5.9 B 2.5 0 1 1 1 1 0
  5 R F 5.9 B 2.5 0 1 1 1 1 0
  6 R E 5.9 A 2.5 0 1 1 1 1 0
4 ET 1 R F 5.4 A 5 0 1 1 0 1 0
  2 L E 5.1 A 2.5 0 1 0 0 1 0
  3 L F 5.1 B 2.5 0 1 0 0 1 0
  4 L E 5.4 A 2.5 0 1 0 1 0 0
  5 L F 5.4 A 2.5 0 1 0 1 1 1
5 ET 1 L E 5.2 B 5 1 1 1 1 0 1
  2 L F 5.2 B 5 0 1 0 1 0 1
  3 R E 5.4 A 2.5 0 1 0 0 0 0
  4 L F 5.4 B 5 0 1 0 0 1 0
6 ET 1 L E 4.6 A 2.5 0 1 0 1 0 1
  2 L F 4.6 A 2.5 0 1 0 1 0 0
  3 L E 4.4 B 2.5 0 1 0 1 1 1
  4 L F 4.4 A 2.5 0 1 0 1 0 0
  5 L E 4.4 A 5 0 1 0 1 0 1
  6 L F 4.4 A 2.5 0 1 0 0 0 0
7 PT 1 L E 4 B 10 0 1 0 1 1 0
  2 L F 4 B 10 1 1 0 1 1 0
  3 L E 3.9 B 2.5 0 1 0 1 0 0
  4 L F 4.2 B 2.5 0 1 1 0 0 0
  5 L E 4.2 B 5 0 1 1 0 1 0
  6 L F 4.2 B 5 0 1 0 0 0 0
8 PT 1* R E 4.8 B 5 0 1 0 0 1 0
  2 R F 4.8 B 10 1 1 1 1 1 1
  3 R E 4.8 B 10 0 1 1 1 1 0
  4 R F 4.8 B 10 0 1 1 1 1 0
  5 R E 4.7 B 10 0 1 1 1 1 0
  6 R F 4.7 B 10 1 1 0 1 0 1
9 PT 1 R E 4.6 B 10 1 1 0 0 1 1
  2 R F 4.7 B 10 0 1 0 0 1 0
  3 R E 4.6 B 10 0 1 1 1 1 0
  4 R F 4.6 B 10 1 1 1 1 1 1
  5 R E 4.4 B 2.5 0 1 1 0 1 0
  6 R F 4.3 B 5 0 1 0 0 1 0
10 PT 1 R E 5.2 B 5 0 1 0 1 0 0
  2 R F 5.2 B 5 0 1 0 1 0 0
  3 R E 5.1 B 5 0 1 0 1 0 1
  4 R F 5.1 B 5 0 1 0 1 0 1

sum 6 49 17 32 27 13

The asterisk * refers to the one segment in which no coherence peak at the tremor frequency occurred. ‘ID’ refers to patient identity number, ‘type’ to type of tremor (ET, PT), 
‘seg’ to segment number, ‘side’ to hand side (L=left, R=right), ‘muscle’ to type of muscle from which it was recorded (‘E’=extensor, ‘F’=exor), ‘TF’ to tremor frequency in Hz, 
‘Group’ to which the segment was assorted based on linear cross-spectral properties (A=no coherence peak at twice the tremor frequency, B=coherence peak at twice the 
tremor frequency), ‘BL’ to block length for spectral analysis, i.e. for duration of decay of the autocorrelation function, ‘BE’ and ‘BM’ to auto bicoherence of the EEG and EMG, 
respectively, ‘XB1’ to cross-bicoherence of the EEG and EMG onto the EEG, ‘XB2’ to cross-bicoherence of the EMG and EEG onto the EMG, ‘XB3’ to cross-bicoherence 
of the EMG onto the EEG, ‘XB4’ to cross-bicoherence of the EEG onto the EMG. 

Table 1: Results of spectral analysis in case of consistent spectral peaks at tremor frequency and twice the tremor frequency.
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there was hardly any evidence for the nonlinearity of the EEG, while 
the rectified EMG exhibited nonlinear properties.

Cross-bicoherences of the 58 EEG and EMG segments were 
significant in 48 cases. Only four of the segments without significant 
cross-bicoherences were from group A and B, one from group B. On the 
contrary, hardly any significant cross-bicoherences were found in group 
C. In both consistent segments of the ET patient, cross-bicoherence was 
significant, while it was insignificant in the consistent segments of the 
PT patient. On the contrary, cross-bicoherence was insignificant in all 
but one (patient 11 segment 4) inconsistent segments.

Throughout all groups investigated, we therefore conclude that 
a majority (83%) of the EEG and EMG segments are phase cross-
coupled. Most segments (32 segments) exhibited cross-bicoherence 
peaks indicating a phase cross-coupling from the EMG and EEG onto 
the EMG, as well as from the EMG onto the EEG (27 segments). On 
the contrary, phase cross-couplings from the EEG and EMG onto the 
EEG (13 segments) as well as from the EEG to the EMG (17 segments) 
were seldom.

While 81% of the segments in group A had significant cross-

bicoherences, 97% of the segments had significant cross-bicoherences 
in group B. The nine segments with larger coherence peaks at twice the 
tremor frequency than at the tremor frequency all had significant cross-
bicoherences, as expected from the simulations of the sinusoidal model 
in Section (combination of linear and nonlinear spectral analysis). 
In contrast to the groups A and B, where spectrum and coherence 
had consistent peak frequencies, the percentage of significant cross-
bicoherences in group C was considerably lower. Only 33% of the 
segments in group C had a significant cross-bicoherence. The low 
fraction of significant cross-bicoherences is in accordance with the 
fact that the segments in group C exhibited inconsistent linear spectral 
properties.

We therefore conclude that tremor is governed by nonlinear phase 
cross-couplings of the motor area of the brain and the trembling muscle. 
In almost all cases when a coherence peak at twice the tremor frequency 
occurred, cross-bicoherence analysis revealed it as a higher harmonic.

Conclusion
Based on a sinusoidal system modeling phase coupling of one 

ID Type Seg Side Muscle TF(Hz) Group BL(s) BE BM XB1 XB2 XB3 XB4
11 PT 1 R E 4.4 C 5 0 1 0 0 0 0
  2 R F 4.4 C 5 0 1 0 0 0 0
  3 R E 4.4 C 5 0 1 0 0 0 0
  4 R F 4.5 C 10 0 1 0 0 1 0
  5 R E 4.4 C 2.5 0 1 0 0 0 0
  6 R F 4.2 C 10 0 0 0 0 0 0

12 ET 1 L E 5.6 C 2.5 0 1 0 0 1 0
  2 L E 5.6 C 2.5 0 1 0 0 0 0
  3 L E 5.6 C 2.5 0 0 0 0 1 0

sum 0 7 0 0 3 0

‘ID’ refers to patient identity number, ‘type’ to type of tremor (ET, PT), ‘seg’ to segment number, ‘side’ to hand side (L=left, R=right), ‘muscle’ to type of muscle from which it 
was recorded (‘E’=extensor, ‘F’=exor), ‘TF’ to tremor frequency in Hz, ‘Group’ to which the segment was assorted based on linear cross-spectral properties C=patients with 
inconsistent spectral peaks at the tremor and twice the tremor frequency, ‘BL’ to block length for spectral analysis, i.e. for duration of decay of the autocorrelation function, 
‘BE’ and ‘BM’ to auto bicoherence of the EEG and EMG, respectively, ‘XB1’ to cross-bicoherence of the EEG and EMG onto the EEG, ‘XB2’ to cross-bicoherence of the 
EMG and EEG onto the EMG, ‘XB3’ to cross-bicoherence of the EMG onto the EEG, ‘XB4’ to cross-bicoherence of the EEG onto the EMG. 

Table 2: Results of spectral analysis in case of inconsistent spectral peaks (group C) at tremor frequency and twice the tremor frequency.

Figure 7: Auto- (a-b) and cross-bicoherences (c-f) of a Parkinsonian Tremor patient right exor EMG (M) and left sensorimotor EEG (E). To test the statistical 
significance at the tuple of the tremor frequency 4.6 Hz on both axes, a bootstrap was conducted for a significance level of 5%.
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or two processes we showed the limitations of second order spectral 
analysis and how they can be overcome by third order spectral analysis. 
For the statistical evaluation of third order spectral analysis, we 
presented a bootstrap approach. It is based on a randomization of the 
data recorded, such that no additional measurements are necessary. As 
our simulations show, the employed bootstrap method is powerful in 
detecting phase-coupling within one and between sub-processes. At the 
same time it keeps the coverage correct if phase-coupling is absent.

Based on the simulations, we analyzed the data of twelve patients of 
Essential Tremor (ET) and Parkinsonian Tremor (PT) with respect to 
their spectral properties. Both linear and nonlinear spectral properties 
were extracted from 58 segments of simultaneous EEG and rectified 
EMG recordings with clear tremor activity of approximately 2-5 min 
duration.

Auto- and cross-bispectral analysis of the tremor data showed that 
peaks in spectra and cross-spectra at double the tremor frequency are 
higher harmonics, not independent processes or couplings.

Linear spectral analysis revealed that more than half of the segments 
exhibit coherent EEG and EMG activity at twice the tremor frequency. 
In 90% of those cases bicoherence analysis revealed the nonlinearity 
of the coupling of the EEG and EMG at the tremor frequency. This 
means that coherence peaks at twice the tremor frequency are linked 
to the pathological interaction at the tremor frequency. In nine of the 
58 investigated segments, the coherence was higher at twice the tremor 
frequency than at the tremor frequency. In all of those segments a 
significant cross-bicoherence peak was found at the tuple of tremor 
frequencies. In a sinusoidal model we showed, how such higher 
coherence peaks at twice the tremor frequency may be induced due to 
phase-couplings based on nonlinearities.

Furthermore, our analyses showed that the coupling is governed by 
a phase coupling from the EMG and EEG onto the EMG (32 segments) 
and from the EMG to EEG (27 segments) as opposed to couplings from 
the EEG and EMG onto the EEG (17 segments) and from the EMG to 
the EEG (13 segments). The tendency of fewer connections onto the 
EEG is explainable by the error-in-variables problem. According to this 
problem, connections from processes with low variance onto processes 
with large variance are expected to be underestimated. Besides cross-
bicoherence analysis, auto-bicoherence analysis was performed on EEG 
and EMG. We showed that the EMG is nonlinear, while nonlinearity 
could not be detected in the EEG in general.

The major difference of ET and PT segments is the occurrence of a 
coherence peak at twice the tremor frequency. All but one PT patient 
had a coherence peak at twice the tremor frequency in all the segments 
included in the study. In contrast, only five ET patients had coherence 
peaks at twice the tremor frequency in some of their segments. In two 
ET patients a coherence peak at twice the tremor frequency did not 
occur in any of the segments. Bicoherence properties of ET and PT 
patients however were comparable.

Other than in previous studies based on higher order spectra in 
tremor analysis [8,9] we combined the analysis of second and third 
order spectra of the EEG and EMG, analyzing both the properties 
of EEG and EMG separately and reconstructing their second order 
interactions. Jakubowski et al. [8] presented a classifier based on 30 auto-
spectral features. They classified ET and PTs based on auto-spectral and 
higher order auto-spectral analysis of the accelerometer placed at the 
trembling hand. They aimed at classifying ET and PT patients based 
on 30 features. Marceglia et al. [9] performed cross-spectral and cross-
bispectral analysis of STN-local field potentials and the EMG for one 

ET patient, only. This patient had a significant cross-bicoherence at the 
tremor-frequency from the EMG and EEG onto the EMG. This is also 
the type of coupling we found in our study of twelve ET and PT patients 
most frequently. To the first time to our knowledge, first and second 
order auto- and cross-spectral analysis was performed on an extended 
set of ET and PT segments.

From the cohort we investigated we conclude, that tremor, both of 
ET and PT patients, is governed by nonlinear interactions of the brain 
and hand. We quantified nonlinear interaction by bispectral analysis 
both within and across EEG and EMG tremor time series. We further 
conclude that both linear and nonlinear spectral analyses are valuable 
to reconstruct spectral properties of processes. This method is not 
restricted to temporal EEG and EMG recordings. On the contrary, we 
propose to analyze both spatial and temporal data from other imaging 
techniques analogously.

That way, nonlinear spectral properties of the processes investigated 
can be revealed and interpreted.
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Appendix A: Block Length Selection for Spectral Analysis 
For any spectral estimation in this article, respective periodograms were squared and averaged as described in linear spectral analysis and 

nonlinear spectral analysis. To this end the data of length N was cut into m blocks of length L=N/m. To reduce bias and variance of the estimate, 

the number of blocks should be maximized while data of successive blocks should remain independent. In order to identify a suitable block 

length for the data analyzed, the decay of the autocorrelation function was investigated. While the autocorrelations of the EEG of all segments 

decay very fast, the autocorrelation of the EMG varied for different segments investigated. To obtain the block lengths L for each segment we 

investigated the decay of its autocorrelation function. Block length was chosen for each segment of tremor recordings such that the envelope of 

the EMG auto-correlation function was decayed. In Figure 5 the autocorrelations of different segments of EMG data are shown in blue. The 

vertical green line identifies the block length used for spectral analysis of the segment from which the autocorrelation function was estimated. 
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