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APPENDIX 
 
Appendix A 

A BRIEF DISCUSSION OF PHOTODETECTORS 
 
In this part, we describe the distribution functions of light 
absorbed by the human retina photoreceptors called cones and 
probes. We focus on the cones.   
Let (C)ai  represent the spectral color response absorbed by 
the retina. Three cones receptors have the spectra absorption 
distribution of Si(λ) i=1,2,3 respectively with certain 
overlapping between the absorption distribution functions, 
(particularly between S1 and S2 i.e. Red and Green). The 
visible color sensation is defined in the range:  
  

nmnm 780     and       380      where maxminmaxmin ≅≅≤≤ λλλλλ ,  
and described by the spectral responses: 
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The retina cones visual spectra distributions of S1,S2 and S3 
decays outside the spectral bandwidth [λmin,λmax]. From eq. 
(A1) we can learn that two spectral distribution C(λ1) and 
C(λ2) may produce identical spectral response ai(C1)= ai(C2) 
for i=1,2,3. This means that two colors that look identical 
could have different spectral distribution.  
In using primary colors, we observe from (A1) that the color 
matching coefficients hij are computed as follows: 
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Where each primary color distribution (k=1,2,3) represents 
one of the basic colors (R, G or B) or any other suitable set of 
basic colors. In addition, we assume that each of the basic 
colors has a uniform energy distribution, i.e. the integral over 
the domain λmin to λmax is unity. Hence, a color matching 
procedure involves solving the following equations: 
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This means, for three primary colors P1,P2 and P3 and three 
types of the retina (cones) distribution functions Si(λ) the 
coefficient matrix is computed from the cross correlation 
distribution response given in (A1) and (A2). Given three 
numbers εk the linear combination set in (A3) describes the 
color perceived as C(λ). 
The idea of color matching in the biophotodetector array 
(retina cones) is somehow adopted to the physical 
photodetector array in the sense of the sensitivity to 
wavelength (i.e. Colors - Red, Green and Blue) and not to the 
array distribution, while in the retina it distributes  non  
equispaced, in the CCD or CMOS photodetector array it 
distributes equispaced.  Without loss of generality we assume 
that a photodetector array has a Di(x,y,λ) color distribution 
function (i=1,2,3) for the three photodetector array  marked as 
R,G,B (could be any other finite set of colors or equivalent 

distribution functions). Let I(λ,x,y) be the color intensity 
distribution object. The coordinate system (x,y) represents the 
photodetector  coordinate system or the film coordinate 
system where every space point (X,Y,Z) represents the 3D real 
time manifold or real time scenario or environment is 
projected onto the film coordinate system having the 
following projection coordinate connections 
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  where x represents the focal length of 

the film plane.  
The photodetector array distribution response function is given 
mutatis mutandis to (A1) as follows: 
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Where gi(x,y,I) represent the (x,y) photodetector cell response 
to the object I. Marking by R = g1(x,y,I), G = g2(x,y,I) and B = 
g3(x,y,I) the cell response to the object I respectively is D1 for 
R, D2 for G and D3 for B of the photodectector array. The 
distribution functions decay outside a finite range, usually 
about 300nm to 800nm, for IR it is over 1200nm and in case 
of thermo it is around 4000nm.  
 
 
Appendix B 
 
Let  
(1)  F(t) = P(t) ∙ G(t)  +  c ∙ P’(t)  where c is constant 

Define 
(2)   ∅(t) =  c ∙ ec−1 ∫G(t)dt= c ∙ e

1
C∫G(t)dt 

Then, 
(3)     d

dt
�∅(t) ∙ P(t)� =  ∅′(t) ∙ P(t) + ∅(t) ∙ P′(t) = 

(4)   ec−1 ∫G(t)dt ∙ �P(t) ∙ G(t) +  c ∙  P ’(t)� = ec−1 ∫G(t)dt ∙ F(t)
   
Multiplying Eq. (1) by ∅(t) and taking (3) and (4) under 
consideration we get 
(5)  ∅(t) ∙ P(t) = ∫ ec−1 ∫G(u)du ∙ F(t)  ∙ dt +  L ,   where L is 
constant 
From (5) we conclude, 
(6)  P(t) = c−1 ∙ e−c−1 ∫G(t)dt ∙ ∫ ec−1 ∫G(u)du ∙ F(t) ∙ dt + c1 ∙
 e−c−1 ∫G(t)dt , 
where c1  = L

C
  

In case G(t) = α
R
 where R is the constant resistance then Eq.(6) 

gets the following form  
(7)  P(t) = c−1 ∙ e−

α(t− td)
c∙R ∙ ∫ e

α(t− td)
c∙R ∙ F(t) ∙ dt +  c1 ∙  e−

α (t−td)
c ∙R   

In case G(t) = ± 𝛼𝛼
𝑅𝑅0 

(t-td)n     for n=1 , Eq. 6 would be 
developed into    
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α
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 while c2 = c1𝑒𝑒−𝑘𝑘. 
 
 
Appendix C 

 
Three different types of noisy pressure waveform P(t) 


