Appendix

The selection of the function τ (t):

Table A1 summarizes the constraints that a function for the generation time has to comply.

Constraints		Consequences	
$N = N_0 2^{\frac{t}{\tau}(t)}$	$\lim_{t \to \infty} N = N_{\max}$	$\lim_{t\to\infty}(\frac{t}{\tau}) = \frac{1}{b}$	$\lim_{t\to\infty}\tau=bt$
$\lim_{t \to 0} N = N_0$		$\lim_{t\to 0}(\frac{t}{\tau})=0$	
$\frac{\dot{N}}{N} = \log 2 \frac{\tau - t \tau}{\tau^2}$	$\lim_{t \to 0} (\frac{\dot{N}}{N}) = \log 2 \lim_{t \to 0} (\frac{1}{\tau} - \frac{t \tau}{\tau^2}) = 0$	$\lim_{t\to 0}(\frac{1}{\tau})=0$	$\lim_{t\to 0}\tau=\infty$
$\lim_{t\to 0} (1-t\frac{\tau}{\tau}) = \text{constant}$		$\lim_{t\to 0} \tau = \frac{a}{t}$	$\lim_{t\to 0}(1-t\frac{\tau}{\tau})=2$

Table A1: The constraints come from the empirical evidence of the growth trend and by the expression for a duplication process. The consequences are the simplest relationships that match the constraints.

Therefore a simple expression for $\tau(t)$ is:

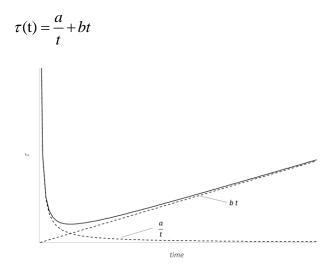


Figure A1: Trend and limit trends of t(t)

Determination of t^{*}:

•

$$\frac{N}{N} = \ln(2)\frac{2at}{(a+bt^2)^2} = \frac{d\log N}{dt}$$
(A1)

$$\frac{d^2 \log N}{dt^2} = \frac{2a \ln(2)}{(a+bt^2)^4} [a^2 - 3b^2t^4 - 2abt^2]$$
(A2)

Putting this expression equal to zero, t^* can be singled out. Replacing t^2 with x and solving the equation $3b^2x^2 + 2abx - a^2 = 0$

One of two roots turns out to be x = a/3b, which means:

$$t^* = \sqrt{\frac{a}{3b}} \tag{A3}$$

Accordingly,

$$\tau^* = \sqrt[4]{\frac{ab}{3}} \tag{A4}$$

$$\log(\frac{N}{N_0})^* = \log(2)\frac{t^*}{\tau^*} = \frac{\log(2)\sqrt{\frac{a}{3b}}}{\sqrt[4]{\frac{ab}{3}}} = \frac{\log(2)}{4b} = \frac{\log(\frac{N}{N_0})_{\max}}{4}$$
(A5)

("*" stands for "at $t=t^*$ ").

Determination of t(0) and tend:

The tangent to the growth curve at t=t* is

$$y = \left[\frac{1}{8t^*} \log(\frac{N}{N_0})_{\max}\right] (3t - t^*)$$
(A6)

For y=0, the corresponding time is:

$$t(0)=1/3 t^*$$
 (A7)

For $y=log(2)/b=log(N/N_0)_{max}$, one can evaluate the so-called t_{end} :

$$t_{end} = \sqrt{3\frac{a}{b}} = 3t^* \tag{A8}$$

$$\xi = b \log_2(\frac{N_{\text{max}}}{N_0}) = \frac{t^2}{(\frac{a}{b}) + t^2}$$

has a tangent at t=t_{end} with

The growth curve expressed using the reduced quantity

slope

$$\dot{\xi}_{end} = \frac{2kt_{end}}{(\mathbf{k} + \mathbf{t}_{end}^2)^2}$$
(A9)

where k=(a/b). Since $t_{end}=3t^*=3(a/3b)^{1/2}=(3k)^{1/2}$, one can easily define the equation of the corresponding straight line,

$$\xi = \frac{1}{8}\sqrt{\frac{3}{k}}t + \delta \tag{A10}$$

Putting the condition of tangency at t=t_{end}, namely, $y=\xi(t = t_{end})=0.75$ (equation A8), one gets,

 $\xi=3/8$. Looking for the time at which $\xi=1$, one gets t=5 (a/3b)=5t^{*}, that corresponds at t_R=5.

Determination of t₀:

The tangent at t^{*} intercepts the horizontal axis at t=t(0) and goes through the points (t^{*}, log N^{*}/N⁰) and (t_{end}, log N_{max}/N_0). When a long flat trend precedes the rising branch of the growth curve, a time shift is necessary to adapt the model to the experimental evidence. Such time shift, t₀, must be subtracted from the observed t^{*}, t_{end}, and t(0), when applying equations A(3), A(7) and A(8).

The evaluation of t_0 straightforwardly comes from the fact that one simply has to rigidly shift the plot, which means that the slope of the tangent at t^* does not change. To simplify the expressions, it is expedient to represent the

growth curve with equation (7), namely, $\xi(t) = \frac{t^2}{k + t^2}$, where k=(a/b). This means that the experimental tangent

straight line at t=t^{*} goes through $\xi^*=0.25$ and has slope $\xi^* = \frac{2kt^*}{(k+t^{*2})^2}$ which is the same as in the case with t₀=0,

namely, $\xi^{\bullet} = \frac{3}{8} \sqrt{\frac{3}{k^{\bullet}}}$. The corresponding straight line equation is:

$$\xi = \xi^* t - \gamma \tag{A11}$$

where (- γ) is the intercept at t=0. Now the shift t₀ can be evaluated by imposing $\xi = -\xi^* / 2 = -0.25$ for t = t₀

(see Table 1).

$$t_0 = \frac{\gamma - 0.125}{3/8\sqrt{3/k}} = -\frac{\text{experimental intercept} + 0.125}{\text{experimental slope}}$$
(A12)

or, using the standard quantities of the current practice

$$t_{0} = -\frac{\text{experimental intercept} + \log(\frac{N}{N_{0}})^{*} / 2}{\text{experimental slope}}$$
(A13)

Equation A(12) can be rewritten taking into account that $\dot{\xi}^* = \frac{3}{8} \sqrt{\frac{3}{k}} = \frac{3}{8} \frac{1}{(t^*)^{id}}$ and that $(t^*)^{id} = (t^* - t_0)$, where

 $(t^*)^{id} = (a/3b)^{1/2}$ refers to the case $t_0=0$ (equation A3). This leads to the expression:

$$t_0 = t^* \frac{8\gamma - 1}{8\gamma + 2}$$
(A14)