## **Supporting Information**

The following Supporting Information is available for this article:

| Algorithm          | Description                     | Reference                                                                                                                | Site                                        |
|--------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                    | Prediction of in vivo kinase-   | Linding R, Jensen LJ, Ostheimer GJ, <i>et al.</i> Systematic discovery of in vivo phosphorylation networks. <i>Cell.</i> |                                             |
| NetworKIN          | substrate relationships         | 2007;129:1415-1426                                                                                                       | http://networkin.info/                      |
|                    | Non-redundant collection of     |                                                                                                                          |                                             |
|                    | 222 sequence-based classifiers  |                                                                                                                          |                                             |
|                    | for linear motifs in            | Miller ML, Jensen LJ, Diella F, et al. Linear Motif Atlas for                                                            |                                             |
|                    | phosphorylation-dependent       | Phosphorylation-Dependent Signaling. Sci Signal.                                                                         |                                             |
| NetPhorest         | signaling                       | 2008;1:ra2                                                                                                               | http://netphorest.info/                     |
|                    | Prediction of serine, threonine | Blom N, Gammeltoft S, Brunak S. Sequence- and                                                                            |                                             |
|                    | or tyrosine phosphorylation     | structure-based prediction of eukaryotic protein                                                                         |                                             |
| NetPhos 3.1 Server | sites                           | phosphorylation sites. J Mol Biol. 1999;294:1351-1362.                                                                   | http://www.cbs.dtu.dk/services/NetPhos/     |
|                    |                                 | Yan Xu, Jun Ding, Ling-Yun Wu, Kuo-Chen Chou. iSNO-                                                                      |                                             |
|                    |                                 | PseAAC: Predict cysteine S-nitrosylation sites in proteins                                                               |                                             |
|                    |                                 | by incorporating position specific amino acid propensity                                                                 |                                             |
|                    | Prediction of cysteine S-       | into pseudo amino acid composition. PLoS One.                                                                            |                                             |
| iSNO-PseAAC        | nitrosylation sites in proteins | 2013;8:e55844                                                                                                            | http://app.aporc.org/iSNO-PseAAC/index.html |
|                    |                                 | Chou KC. "Some remarks on protein attribute prediction                                                                   |                                             |
|                    | Prediction of cysteine S-       | and pseudo amino acid composition (50th Anniversary                                                                      |                                             |
| iSNO-AAPair        | nitrosylation sites in proteins | Year Review). <i>J Theor Biol</i> . 2011;273:236-247                                                                     | http://app.aporc.org/iSNO-AAPair/           |
|                    |                                 | Shi                                                                                                                      |                                             |
|                    |                                 | SP, Chen X, Xu HD, Qiu JD. PredHydroxy: computational                                                                    |                                             |
|                    | Prediction of Protein           | prediction of protein hydroxylation site locations based on                                                              |                                             |
| PredHydroxy        | Hydroxylation Site              | the primary structure. <i>Mol Biosyst</i> . 2015;11:819-825                                                              | http://bioinfo.ncu.edu.cn/PredHydroxy.aspx  |
|                    |                                 | Jia J, Zhang L, Liu Z, Xiao X, Chou KC. pSumo-CD:                                                                        |                                             |
|                    |                                 | predicting sumoylation sites in proteins with covariance                                                                 |                                             |
|                    | Prediction of sumoylation sites | discriminant algorithm by incorporating sequence-coupled                                                                 |                                             |
| pSumo-CD           | in proteins                     | effects into general PseAAC. Bioinformatics.                                                                             | http://www.jci-bioinfo.cn/pSumo-CD          |

**S1 Table.** Algorithms of post-translational modifications for ABCA4 (p.A1794D and p.P1948L) and RDH11 p.E79K exchanges.

|               |                                                                              | 2016;32:3133-3141                                                                                                                                                                                                                                                           |                                                          |
|---------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| iCar-PseCp    | Prediction of carbonylation sites in proteins                                | Jia J, Liu Z, Xiao X, Liu B, <i>et al.</i> iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. <i>Oncotarget</i> . 2016;7:34558-34570                                              | http://www.jci-bioinfo.cn/iCar-PseCp                     |
| Ptpset        | Prediction of dephosphorylation site                                         | n/a                                                                                                                                                                                                                                                                         | http://bioinfo.bjmu.edu.cn/ptpset/                       |
| ESA-UbiSite   | Prediction of human<br>ubiquitination sites<br>Prediction of N-Glycosylation | Wang JR, Huang WL, Tsai MJ, Hsu KT, <i>et al.</i> ESA-<br>UbiSite: accurate prediction of human ubiquitination sites<br>by identifying a set of effective negatives. <i>Bioinformatics</i> .<br>2017;33:661-668<br>Gupta R, Jung E, Brunak S. Prediction of N-glycosylation | http://iclab.life.nctu.edu.tw/iclab_webtools/ESAUbiSite/ |
| NGlyc         | sites in human proteins                                                      | sites in human proteins. In preparation, 2004                                                                                                                                                                                                                               | http://www.cbs.dtu.dk/services/NetNGlyc/                 |
| Myristoylator | sites                                                                        | n/a                                                                                                                                                                                                                                                                         | http://mendel.imp.ac.at/myristate/SUPLpredictor.htm      |
| Phogly-PseAAC | Prediction of lysine<br>phosphoglycerylation in<br>proteins                  | Xu Y, Ding YX, Ding J, Deng NY. Phogly-PseAAC: prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity. <i>J Theor Biol.</i> 2015;379:10-15                                                                                   | http://app.aporc.org/Phogly-PseAAC/                      |
| N-Ace         | Prediction of protein acetylation site                                       | n/a                                                                                                                                                                                                                                                                         | http://n-ace.mbc.nctu.edu.tw/                            |
| MDD-SOH       | Prediction of S-sulfenylation sites                                          | Bui VM, Lu CT, Ho TT, Lee TY. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs. <i>Bioinformatics</i> . 2016;32:165-712                                                                                         | http://csb.cse.yzu.edu.tw/MDDSOH/                        |
| GPI-SOM       | Prediction of GPI-anchor signals                                             | Fankhauser N, Maeser P. Identification of GPI-anchor<br>signals by a Kohonen Self Organizing Map.<br><i>Bioinformatics</i> . 2005;21:1846-1852                                                                                                                              | http://gpi.unibe.ch/                                     |
| ModPred       | Predicton of potential post-<br>translational modification sites             | Pejaver V, Hsu WL., Xin F, Dunker AK., <i>et al.</i> The structural and functional signatures of proteins that undergo multiple events of post-translational modification. <i>Protein Sci.</i> 2014;23:1077-1093                                                            | http://www.modpred.org/                                  |
| iNitro-Tyr    | Prediction of nitrotyrosine sites in proteins                                | Xu Y, Wen X, Wen LS, Wu LY, <i>et al.</i> iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. <i>PLoS One</i> . 2014;9:e105018                                                                                            | http://app.aporc.org/iNitro-Tyr/                         |

n/a, not available data.

| Position (hg19) | Exon     | dbSNP ID             | Variant (NM_000350.2) | Amino-acid<br>change | Genotype | Function   | MAF (Ion Reporter)                  |
|-----------------|----------|----------------------|-----------------------|----------------------|----------|------------|-------------------------------------|
| chr1:94578548   | 2        | rs4847281            | c.141A>G              | p.(=)                | C/C      | Synonymous | AMAF=0.0361:EMAF=1.0E-4:GMAF=0.0123 |
| chr1:94549083   | intronic | rs574741             | c.769-86A>G           | none                 | C/C      |            | n/a                                 |
| chr1:94549029   | intronic | rs526016             | c.769-32T>C           | none                 | A/G      |            | AMAF=0.1231:EMAF=0.3071:GMAF=0.2449 |
| chr1:94544276   | 10       | rs4147830            | c.1240-14C>T          | none                 | G/A      |            | AMAF=0.4762:EMAF=0.46:GMAF=0.4655   |
| chr1:94544234   | 10       | rs3112831            | c.1268A>G             | p.H423R              | T/C      | Missense   | AMAF=0.1655:EMAF=0.3094:GMAF=0.2606 |
| chr1:94495930   | intronic | rs547806             | c.4352+54A>G          | none                 | C/C      |            | n/a                                 |
| chr1:94487354   | intronic | rs472908             | c.4773+48C>T          | none                 | G/A      |            | AMAF=0.2502:EMAF=0.4309:GMAF=0.3698 |
| chr1:94480178   | 38       | rs61751406           | c.5381C>A             | p.A1794D             | G/T      | Missense   | n/a                                 |
| chr1:94476388   | 40       | rs1801574            | c.5682G>C             | p.(=)                | C/G      | Synonymous | AMAF=0.2444:EMAF=0.2517:GMAF=0.2493 |
| chr1:94474452   | Intronic | rs4147856            | c.5715-25A>C          | none                 | T/G      |            | AMAF=0.2376:EMAF=0.1913:GMAF=0.207  |
| chr1:94474328   | 41       | rs4147857            | c.5814A>G             | p.(=)                | T/C      | Synonymous | AMAF=0.2376:EMAF=0.1912:GMAF=0.2069 |
| chr1:94473896   | Intronic | rs2275031            | c.5836-43C>A          | none                 | G/T      |            | AMAF=0.2329:EMAF=0.1849:GMAF=0.2011 |
| chr1:94473864   | Intronic | rs1800739            | c.5836-11G>A          | none                 | C/T      |            | AMAF=0.2549:EMAF=0.1845:GMAF=0.2084 |
| chr1:94473845   | 42       | rs56142141:rs2275029 | c.5843_5844delCAinsTG | p.P1948L             | TG/CA    | Missense   | AMAF=0.2345:EMAF=0.1819:GMAF=0.1997 |
| chr1:94471154   | Intronic | rs4147863            | c.6006-16G>A          | none                 | C/T      |            | AMAF=0.1552:EMAF=0.1829:GMAF=0.1735 |
| chr1:94471075   | 44       | rs1762114            | c.6069T>C             | p.(=)                | G/G      | Synonymous | AMAF=0.4682:EMAF=0.0667:GMAF=0.2243 |

## **S2 Table.** Variants in the *ABCA4* gene of patients F1:IV.13 and F1:IV.17.

AMAF, African American minor allele frequency. EMAF, European American minor allele frequency.

GMAF, Global minor allele frequency.

n/a, not available data.

| Gene   | dbSNP ID       | Allele count | Allele number | Homozygotes | Frequency |
|--------|----------------|--------------|---------------|-------------|-----------|
| ABCA4  | rs61751406     | Not found    | Not found     | Not found   | Not found |
| ABCA4  | rs56142141     | 45           | 1218          | 0           | 0.036946  |
| ABCA4  | rs547806       | 1205         | 1218          | 596         | 0.989327  |
| RDH11  | rs80140987     | 30           | 1218          | 1           | 0.024631  |
| CERKL  | rs121909398    | 1            | 1218          | 0           | 0.000821  |
| TLR4   | chr9:120476307 | Not found    | Not found     | Not found   | Not found |
| CRX    | rs61748438     | 3            | 1218          | 0           | 0.002463  |
| GUCA1B | rs137853903    | 7            | 1218          | 0           | 0.005747  |
| TLR3   | rs353113432    | 2            | 1218          | 0           | 0.001642  |

**S3 Table.** Candidate variants on the ABraOM database.

## **S4 Table.** Prioritized variants by The Exomiser.

| Patient ID | Gene  | dbSNP ID              | Exomiser Score | Phenotype Score | Variant Score | Random walk similarity score |
|------------|-------|-----------------------|----------------|-----------------|---------------|------------------------------|
| F1:IV.13   | ABCA4 | rs61751406/rs56142141 | 1              | 0.725           | 0.864         | 0.725                        |
|            | CRX   | rs61748438            | 1              | 0.353           | 0.704         | 0.707                        |
|            | TLR3  | rs35311343            | 1              | 0.704           | 0.831         | 0.704                        |
| F1:IV.17   | TLR4  | Novel                 | 1              | 0.704           | 0.862         | 0.704                        |
|            | ABCA4 | rs61751406/rs56142141 | 1              | 0.725           | 0.864         | 0.725                        |
|            | TLR4  | Novel                 | 1              | 0.704           | 0.862         | 0.704                        |

| Name     | Title                                        | Residue at position 79 | Identity of normal sequence target | Identity of E79K target sequence | Method      | Oligo State   | Ligants |
|----------|----------------------------------------------|------------------------|------------------------------------|----------------------------------|-------------|---------------|---------|
| 3tzq.1.A | Short-chain type dehydrogenase/reductase     | т                      | 23.51                              | 23.51                            | X-ray, 2.5Å | homo-tetramer | None    |
| 3r1i.1.A | Short-chain type dehydrogenase/reductase     | V                      | 24.89                              | 24.79                            | X-ray, 2.0Å | homo-tetramer | 4 x MG  |
| 3pk0.1.A | Short-chain type dehydrogenase/reductase SDR | А                      | 24.05                              | 23.95                            | X-ray, 1.9Å | homo-tetramer | 6 x CA  |
| 4nbw.1.B | Short-chain type dehydrogenase/reductase SDR | Е                      | 27.90                              | 27.78                            | X-ray, 2.0Å | homo-tetramer | 4 x NAD |
| 4nbw.1.A | Short-chain type dehydrogenase/reductase SDR | Е                      | 27.90                              | 27.78                            | X-ray, 2.0Å | homo-tetramer | 4 x NAD |
| 2qq5.1.A | Dehydrogenase/reductase SDR family member 1  | Е                      | 26.69                              | 26.69                            | X-ray, 1.8Å | Homo-dimer    | None    |
| 4fn4.1.A | Short chain dehydrogenase                    | F                      | -                                  | 26.07                            | X-ray, 1.8Å | homo-tetramer | 4 x NAD |
| 3tox.1.A | Short chain dehydrogenase                    | А                      | 22.82                              | 22.82                            | X-ray, 1.9Å | homo-tetramer | 4 x NAD |

## **S5 Table.** Results of Swiss-Model modelling of RDH11 templates.

**S6 Table.** RDH11 protein prediction of PTMs–lysine phosphoglycerylation by Phogly PseAAC.

| Predicted hydrolysine site position | Peptides                 | Positve Score | Negative Score |
|-------------------------------------|--------------------------|---------------|----------------|
| 55                                  | GANTGIG <b>K</b> ETAKELA | 4.505         | 5.025          |
| 77                                  | LACRDVE <b>K</b> GKLVAKE | 3.152         | 3.972          |
| 79                                  | CRDVEKG <b>K</b> LVAKEIQ | 5.586         | 5.618          |
| 119                                 | KGFLAEE <b>K</b> HLHVLIN | 4.916         | 4.991          |
| 163                                 | LTHLLLE <b>K</b> LKESAPS | 2.88          | 3.156          |
| 194                                 | FHNLQGE <b>K</b> FYNAGLA | 4.391         | 4.506          |

| Residue | Modification         | Sequence                           | Score | Confidence   |
|---------|----------------------|------------------------------------|-------|--------------|
| E79     | ADP-ribosylation     | RVYLACRDVEKG <b>E</b> LVAKEIQTTTGN | 0.17  | Not modified |
| E79     | Amidation            | RVYLACRDVEKG <b>E</b> LVAKEIQTTTGN | 0.40  | Not modified |
| E79     | Carboxylation        | RVYLACRDVEKG <b>E</b> LVAKEIQTTTGN | 0.27  | Not modified |
| E79     | Proteolytic_cleavage | RVYLACRDVEKG <b>E</b> LVAKEIQTTTGN | 0.48  | Not modified |
| K79     | Acetylation          | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.50  | Low          |
| K79     | Amidation            | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.27  | Not modified |
| K79     | Hydroxylation        | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.00  | Not modified |
| K79     | Methylation          | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.35  | Not modified |
| K79     | Proteolytic cleavage | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.55  | Low          |
| K79     | PUPylation           | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.17  | Not modified |
| K79     | SUMOylation          | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.17  | Not modified |
| K79     | Ubiquitination       | RVYLACRDVEKG <b>K</b> LVAKEIQTTTGN | 0.29  | Not modified |

**S7 Table.** RDH11 protein prediction of PTMs by Modpred.



**S1 Fig.** Pedigree of the father's family of the siblings (F2). No candidate variant was found. N/A: DNA sample not available.



**S2 Fig.** DNA sequence results by WES and Sanger sequencing of *ABCA4\*rs547806:A>G*.



**S3 Fig.** Family members electropherograms of *ABCA4\*rs61751406:C>A*.



**S4 Fig.** DNA sequence electropherograms of *ABCA4\*rs56142141:C>T* and *ABCA4\*rs2275029:A>G*.



**S5 Fig.** DNA sequence electropherograms of *ABCA4\*rs547806:A>G*.



**S6 Fig.** DNA sequence electropherograms of *RDH11\*rs80140987:G>A*.



**S7 Fig.** DNA sequence electropherograms of variants in retinal dystrophy-related genes of patient F1:IV.13.



**S8 Fig.** DNA sequence electropherograms of variants in retinal dystrophy-related genes.



**S9 Fig.** The retinoid cycle enzymatic reactions.

The visual cycle begins with the absorption of light by visual pigments, called rhodopsin, present in the outer segment (OS) disk membranes of photoreceptor cells and proceeds with several enzymatic reactions aiming to recycle the light-sensitive chromophore 11-*cis* retinal to be re-stimulated by a next photon. In the dark, the 11-*cis* retinal is covalently

attached to opsin and light stimulation results in its isomerization to all-trans retinal, which diffuses across membrane to the cytoplasmic side. Then it is enzymatically reduced to alltrans retinol and transported to the RPE, where it is converted to 11-cis retinol and oxidized to 11-cis retinal, which is returned to the OS disks for the regeneration of photosensitive rhodopsin. Alternatively, а fraction of all-trans retinal will with react phosphatidylethanolamine (PE) forming N-retinylidene-PE (NR-PE) being actively transported across the membrane by ABCA4 [84]. When on the cytoplasmic side, NR-PE dissociates into PE and all-trans retinal that is equally reduced and transported to RPE. Whenever ABCA4 activity is reduced or absent, NR-PE accumulates on the lumen side of

disk membranes and reacting with another molecule of all-*trans* retinal produces toxic retinoids. As a result, lipofuscin concentration increases in the RPE leading to photoreceptor degeneration and vision loss [84-87]. Thus, *ABCA4\*rs61751406:C>A* and *RDH11\*rs80140987:G>A* may impair the visual cycle twice, probably causing insufficient supply of chromophores and an excess of toxic retinoids in the RPE.