Supplementary Material

Thiophene, Benzothiadiazole Copolymers: Synthesis, Optoelectronic Properties, and Electrical Characterization for Photovoltaic Application

Ashraf A. El-Shehawy^{1*}, Nabiha I. Abdo², Ahmed A. El-Barbary³, Jin Woo CHOI,⁴ Hamdy S. El-Sheshtawy¹, and Jae-Suk Lee^{4*}

¹ Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

Contents

- Analytical data of compounds 4, 6, and 8.
- Analytical data of copolymers P1-P10.
- Figures S1 and S2. ¹H- and ¹³C-NMR spectra of compound 4, respectively.
- Figures S3 and S4. ¹H- and ¹³C-NMR spectra of compound 6, respectively.
- Figures S5 and S6. ¹H- and ¹³C-NMR spectra of compound 8, respectively.
- Figures S7–S16. ¹H-NMR spectra of copolymers P1–P10, respectively.
- Figure S17. TGA thermograms of copolymers P1–P10.
- Figure S18. DSC curves of copolymers P1–P10.
- **Figure S19**. B3LYP/6-311++G(d,p) optimized structures of P1, P2, P7, P8, P9 and P10 copolymers.
- Figure S20. Cyclic voltammograms of copolymers P1–P10.
- Figure S21. XRD of copolymer P10 (poly HT–BzT–HT–*co*–DTT) thin film.

² Higher Institute of Engineering and Technology, New Borg El-Arab City, Alexandria 21934, Egypt

³ Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt

⁴ School of Material Science and Engineering, the Grubbs Center for Polymers and Catalysis and Research institute for Solar and Sustainable Energy (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

Analytical data of compounds 4, 6, and 8

5,5°-Dibromo-2,2°-bithiophene, 4 (2.88 g, 89%) as a white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.96-9.95$ (d, J = 4.00 Hz, 2 H, 2X CBr-CH-CH), 6.85-6.84 (d, J = 4.00 Hz, 2 H, 2X CBr-CH-CH-) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.35$, 130.64, 124.12, 111.50 ppm. C₈H₄Br₂S₂ (626.53): Calcd. C 29.65, H 1.24, Br 49.32, S 19.79; found C 30.07, H 1.34, Br 49.55, S 19.63.

2,5-Dibromothieno[3,2-*b***]thiophene, 6** (2.74 g, 92%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ = 7.16 (s, 2 H, 2X CBr-C*H*) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 138.22, 121.71, 113.57 ppm. C₆H₂Br₂S₂ (298.02): Calcd. C 24.18, H 0.68, Br 53.62, S 21.52; found C 24.11, H 0.72, Br 53.49, S 21.59.

5,5`-Dibromodithieno[3,2-*b***;2`,3`-***d***]thiophene**, **8** (3.15 g, 89.2%) as a tan solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72$ (s, 2 H, 2X CBr-C*H*) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 139.36$, 130.34, 124.12, 112.32 ppm. C₈H₂Br₂S₃ (354.1): Calcd. C 27.13, H 0.57, Br 45.13, S 27.17; found C 27.49, H 0.63, Br 45.01, S 27.19.

Analytical data of copolymers P1-P10

Poly[(**thieno**[**3**,**2**-*b*]**thiophene-2**,**5**-diyl)-*alt*-(**4**,**7**-bis(**3**-hexylthiophen-2-yl)benzo[c]-[**2**,**1**,**3**]**thiadiazole**)-**5**,**5**-diyl], P1: ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 7.69-7.69 (m, 2 H, 2X CH (Ph)), 7.38 (s, 2 H, 2X CS-CH-CS), 7.23 (s, 2 H, 2X CS-CH-C-hexyl), 2.69-2.68 (br. s, 4 H, 2X C-CH₂-hexyl), 1.69-1.56 (br. m, 4 H, 2X C-CH₂-CH₂-), 1.31-1.24 (br. m, 12 H, 2X -(CH₂)₃CH₃), 0.84-0.83 (br. m, 12 H, 2X CH₃). (C₃₂H₃₂N₂S₅)_n (604.93)_n: Calcd. C 63.53, H 5.33, N 4.63, S 26.50; Found C 63.62, H 5.44, N 4.52, S 26.63.

Poly[(**thieno**[**3**,**2**-*b*]**thiophene-2**,**5**-diyl)-*alt*-(**4**,**7**-bis(**4**-hexylthiophen-2-yl)benzo[c]-[**2**,**1**,**3**]**thiadiazole**)-**5**,**5**-diyl], **P2:** ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 7.97 (br. m, 2H, 2X CH (Ph)), 7.82-7.79 (br. s, 2H, 2X CH-C-Ph), 7.02 (br. s, 2H, 2X CH-C-hexyl), 2.85-2.67 (br. m, 4H, 2X C-CH₂-hexyl), 1.69-1.55 (br. s, 4H, 2X C-CH₂CH₂-), 1.45-1.33 (br. m, 12 H, 2X -(CH₂)₃CH₃), 0.91-0.86 (br. m, 6 H, 2X CH₃). (C₃₂H₃₂N₂S₅)_n (604.93)_n: Calcd. C 63.53, H 5.33, N 4.63, S 26.50; found C 63.40, H 5.42, N 4.51, S 26.39.

Poly[(2,2`-bithiophene-5,5`-diyl)-alt-(4,7-bis(3-hexylthiophen-2yl)-benzo[c][2,1,3]-

thiadiazole)-5,5-diyl], P3: ¹H NMR (CDCl₃, 400 MHz, δ /ppm): 7.68 (br. s, 2 H, 2X CH (Ph)), 7.20 (s, 2 H, 2X CH-CS), 7.15 (s, 2 H, 2X –CHCH-CS), 7.11 (s, 2 H, 2X CH-C-hexyl), 2.68 (br. s, 4 H, 2X C-CH₂CH₂-), 1.30-1.24 (br. m, 12 H, 2X -(CH₂)₃CH₃), 0.84-0.83 (br. m, 6 H, 2X CH₃). (C₃₄H₃₄N₂S₅)_n (630.97)_n: Calcd. C 64.72, H 5.43, N 4.44, S 25.41; Found C 64.89, H 5.66, N 4.22, S 25.19.

Poly[(2,2`-bithiophene-5,5`-diyl)-*alt*-(4,7-bis(4-hexylthiophen-2yl)benzo[c][2,1,3]thiadiazole)-5,5-diyl], P4: ¹H NMR (CDCl₃, 400 MHz, δ /ppm): 7.79-7.96 (br. m, 2 H, 2X CH (Ph)), 7.81-7.79 (s, 2 H, 2X CH-CS), 7.14-7.12 (br. s, 2 H, 2X CH-C-hexyl), 7.03 (s, 2 H, 2X –CHCH-CS), 2.85-2.69 (br. m, 4 H, 2X CH-C-hexyl), 1.70 (br. s, 4 H, 2X C-CH₂CH₂-), 1.55-1.25 (br. m, 12 H, 2X -(CH₂)₃CH₃), 0.92-0.86 (br. m, 6 H, 2X CH₃). (C₃₄H₃₄N₂S₅)_n (630.97)_n: Calcd. C 64.72, H 5.43, N 4.44, S 25.41; Found C 64.56, H 5.30, N 4.19, S 25.29.

Poly[(**thieno**[**3**,**2**-*b*]**thiophene-3**,**6**-diyl)-*alt*-(**4**,**7**-bis(**3**-hexylthiophen-2-yl)benzo[c]-[**2**,**1**,**3**]**thiadiazole**)-**5**,**5**-diyl], P5: ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 7.73-7.71 (s, 2H, 2X CH (Ph)), 7.64 (s, 2H, 2X CHS), 7.43 (s, 2H, 2X CH-C-hexyl), 2.75-2.71 (br. m, 4H, 2X C-CH₂-hexyl), 1.71 (br. s, 4 H, 2X C-CH₂CH₂-), 1.33-1.25 (br. m, 12 H, 2X - (CH₂)₃CH₃), 0.85 (br. s, 6 H, 2X CH₃). (C₃₂H₃₂N₂S₅)_n (604.93)_n: Calcd. C 63.53, H 5.33, N 4.63, S 26.50; Found C 65.41, H 5.56, N 4.50, S 26.40.

Poly[(**thieno**[**3**,**2**-*b*]**thiophene-3**,**6**-diyl)-*alt*-(**4**,**7**-bis(**4**-hexylthiophen-2-yl)benzo[c]-[**2**,**1**,**3**]**thiadiazole**)-**5**,**5**-diyl], P6: ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 8.10-8.05 (br. s, 2H, 2X CH (Ph)), 7.86-7.84 (s, 2H, 2X CH-C-Ph), 7.48 (s, 2H, 2X CHS), 2.85-2.68 (br. m, 4H, 2X C-CH₂-hexyl), 1.71 (br. m, 4H, 2X C-CH₂CH₂-), 1.38-1.30 (br. m, 12 H, 2X C-CH₂CH₂-), 0.90-0.86 (br. m, 6 H, 2X CH₃). (C₃₂H₃₂N₂S₅)_n (604.93)_n: Calcd. C 63.53, H 5.33, N 4.63, S 26.50; Found C 63.49, H 5.21, N 4.55, S 26.20.

Poly[(**thiophene-2,5-diyl**)-*alt*-(**4,7-bis**(**3-hexylthiophen-2-yl**)**benzo**[**c**][**2,1,3**]**thiadiazole**)-**5,5-diyl**], **P7:** ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 8.00 (br. s, 2H, 2X CH (Ph)), 7.21-7.19 (s, 2H, CS-CHCH-CS), 7.17 (s, 2H, 2X CH-C-hexyl), 2.69 (br. s, 4H, 2X

C-CH₂-hexyl), 1.69 (br. m, 4H, C-CH₂CH₂-), 1.31-1.25 (br. m, 12H, 2X -(CH₂)₃CH₃), 0.85 (br. s, 6H, 2X CH₃). $(C_{30}H_{32}N_2S_4)_n$ (548.85)_n: Calcd. C 65.65, H 5.88, N 5.10, S 23.37; Found C 65.69, H 5.91, N 5.01, S 23.40.

Poly[(**thiophene-2,5-diyl**)-*alt*-(**4,7-bis**(**4-hexylthiophen-2-yl**)**benzo**[**c**][**2,1,3**]**thiadiazole**)-**5,5-diyl**], **P8:** ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 7.83-7.80 (br. m, 2H, 2X CH (Ph)), 7.79-7.77 (s, 2H, 2X CH-C-Ph), 7.23-7.20 (s, 2H, 2X CS-CHCH-CS), 2.95-2.67 (br. m, 4H, 2X C-CH₂-hexyl), 1.69-1.60 (br. s, 4H, C-CH₂CH₂-), 1.57-1.32 (br. m, 12H, 2X -(CH₂)₃CH₃), 0.92-0.90 (br. s, 6H, 2X CH₃). (C₃₀H₃₂N₂S₄)_n (548.85)_n: Calcd. C

65.65, H 5.88, N 5.10, S 23.37; Found C 65.41, H 5.90, N 5.00, S 23.27.

Poly[(**dithieno**[**3**,**2**-*b*;**2**`,**3**`-*d*]**thiophene-2**,**6**-**diy**])-*alt*-(**4**,**7**-**bis**(**3**-**hexylthiophen-2**-**y**])**benzo**[**c**][**2**,**1**,**3**]**thiadiazole**)-**5**,**5**-**diy**], **P9**: ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 7.69 (br. s, 2H, 2X CH (Ph)), 7.42 (br. s, 2H, CH-CS), 7.21 (s, 2H, 2X CH-C-hexyl), 2.69 (br. s, 4H, 2X C-CH₂-hexyl), 1.69-1.58 (br. m, 4H, C-CH₂CH₂), 1.30-1.25 (br. m, 12H, 2X -(CH₂)₃CH₃), 0.85 (br. s, 6H, 2X CH₃). (C₃₄H₃₂N₂S₆)_n (661.02)_n: Calcd. C 61.78, H 4.88, N 4.24, S 29.10; Found C 61.99, H 4.71, N 4.21, S 29.01.

Poly[(**dithieno**[**3**,**2**-*b*;**2**`,**3**`-*d*]**thiophene-2**,**6**-**diy**])-*alt*-(**4**,**7**-**bis**(**3**-**hexylthiophen-2yl**)**benzo**[**c**][**2**,**1**,**3**]**thiadiazole**)-**5**,**5**-**diy**], **P10**: ¹H NMR (CDCl₃, 400 MHz, δ/ppm): 7.96-7.95 (br. m, 2H, 2X CH (Ph)), 7.79 (s, 2H, 2X CH-C-Ph), 7.37 (s, 2H, 2X CH-CS), 2.69-2.65 (br. m, 4H, 2X C-CH₂-hexyl), 1.69 (m, 4H, C-CH₂CH₂-), 1.37-1.25 (br. m, 12H, 2X -(CH₂)₃CH₃), 0.92-0.90 (br. s, 6H, 2X CH₃). (C₃₄H₃₂N₂S₆)_n (661.02)_n: Calcd. C 61.78, H 4.88, N 4.24, S 29.10; Found C 61.71, H 4.99, N 4.13, S 29.05.

Figure S1. ¹H NMR (400 MHz) spectrum of compound 4 in CDCl₃

Figure S2. ¹³C NMR (100 MHz) spectrum of compound 4 in CDCl₃

Figure S3. ¹H NMR (400 MHz) spectrum of compound 6 in CDCl₃

Figure S4. ¹³C NMR (100 MHz) spectrum of compound 6 in CDCl₃

Figure S5. ¹H NMR (400 MHz) spectrum of compound 8 in CDCl₃

Figure S6. ¹³C NMR (100 MHz) spectrum of compound 8 in CDCl₃

Figure S7. ¹H NMR (400 MHz) spectrum of copolymer P1 in CDCl₃

Figure S8. ¹H NMR (400 MHz) spectrum of copolymer P2 in CDCl₃

Figure S9. ¹H NMR (400 MHz) spectrum of copolymer P3 in CDCl₃

Figure S10. ¹H NMR (400 MHz) spectrum of copolymer P4 in CDCl₃

Figure S11. ¹H NMR (400 MHz) spectrum of copolymer P5 in CDCl₃

Figure S12. ¹H NMR (400 MHz) spectrum of copolymer P6 in CDCl₃

Figure S13. ¹H NMR (400 MHz) spectrum of copolymer P7 in CDCl₃

Figure S14. ¹H NMR (400 MHz) spectrum of copolymer P8 in CDCl₃

Figure S15. ¹H NMR (400 MHz) spectrum of copolymer P9 in CDCl₃

Figure S16. ¹H NMR (400 MHz) spectrum of copolymer P10 in CDCl₃

Figure S17. TGA thermograms of copolymers P1-P10.

Figure S18. DSC curves of copolymers P1-P10.

Figure S19. B3LYP/6-311++G(d,p) optimized structures of **P1**, **P2**, **P7**, **P8**, **P9** and **P10** copolymers.

Figure S20. Cyclic voltammograms of copolymers P1-P10.

Figure S21. XRD of copolymer P10 (poly HT–BzT–HT–*co*–DTT) thin film.