
   

Supplementary File 1 

1. Detailed Materials and Methods 

1.1 Subjects and Procedures 

Subjects in this study were recruited for a study of a phenotyping battery that was designed to provide 

behavioral and brain imaging phenotypes for future OUD medication development research. An initial 

phone interview screened potential participants for study inclusion. Subjects who passed the phone 

screening were invited for a more thorough in-person screening interview (visit 1) during which all 

study procedures were explained and written informed consent was obtained. A medical history and 

physical examination were conducted by a licensed physician or nurse practitioner under supervision 

of a physician. Psychiatric and substance use histories were conducted using the Mini International 

Neuropsychiatric Interview (MINI) for Diagnostic and Statistical Manual version 5 (DSM-5) 

(American Psychiatric Association, 2013), including a review of medications/treatment. The MINI 

(https://harmresearch.org/index.php/product/mini-international-neuropsychiatric-interview-mini-7-0-

2-4/) is a short, structured diagnostic interview for the DSM that generates DSM-5 diagnoses, including 

opioid use disorder (OUD) severity (Mild, Moderate, Severe). Blood chemistries, complete blood 

count, and urinalysis were obtained from each subject. The results of the MINI interview were 

presented to and confirmed by a physician co-author (JLS or FGM) who is dual board-certified in 

psychiatry and addiction medicine. All diagnoses were determined prior to any fMRI analysis. For the 

OUD group, inclusion criteria were DSM-5 diagnosed OUD and age between 18 and 70 years. 

Exclusion criteria were any history of schizophrenia, seizure disorder, significant head trauma, any 

changes to psychoactive medications within 30 days of the study period, any other DSM-5 diagnosed 

Substance Use Disorder with a severity diagnosis greater than the subject’s OUD severity, or DSM-5 
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diagnosed severe Alcohol Use Disorder. For the HC group, the only inclusion criterion was age 18 to 

70. Exclusion criteria were any history of substance use disorder, any history of schizophrenia, seizure 

disorder, significant head trauma, or any changes to psychoactive medications within 30 days of the 

study period.  

Subjects who qualified for the study completed three additional visits: a visit in which they completed 

study behavioral measures and questionnaires (visit 2), a visit in which they completed safety screening 

for the MRI scan and a mock MRI session (visit 3), and a visit in which they completed an MRI 

scanning session (visit 4). All the fMRI scans in this study were resting-state fMRI scans, and thus 

none of the fMRI scans in this study involved tasks inside the scanner. The timing of the visits was as 

follows: after the initial in-person screening visit, the behavioral assessment visit was scheduled to take 

place within about 14 days (1-2 weeks). The MRI screening and mock scan visit typically occurred 

within 1-3 weeks after behavioral assessment. The MRI scan occurred within 30 days of the MRI 

screening visit. Participants were asked to refrain from smoking 1 hour and drinking caffeine 3 hours 

before their MRI scan. Urine drug screens (UDS) and breath alcohol screens were collected at each 

visit. A clinical assessment by a physician or nurse practitioner was performed during the MRI visit 

before scanning to ensure that subjects did not meet DSM-5 criteria for drug intoxication at the time 

of the scan. Subjects were also assessed for gross signs of drug withdrawal by a physician or nurse 

practitioner during the MRI visit before scanning. None of the UDS on the day of scanning were 

positive for HC subjects. None of the breath alcohol screens on the day of scanning were positive from 

HC or OUD subjects. 

80 subjects (33 OUD, 47 HC) completed the MRI scanning session. In our final analyses, we only 

included subjects who met strict criteria for head motion (Parkes et al., 2018), had all physiological 

data needed to correct for physiological noise, and for OUD subjects had at least one UDS positive for 
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either illicit opioids or buprenorphine or methadone. This initial refined group included 25 OUD 

subjects and 39 HC subjects. We then further refined our HC sample to match more closely the age 

and sex composition of the OUD group until there was an equal number of subjects in both groups. 

The authors of the FMRIB Software Library (FSL) method, MELODIC (Multivariate Exploratory 

Linear Optimized Decomposition into Independent Components; Beckmann & Smith, 2004), which 

we used to generate group ICA network components, recommend balancing the number of subjects in 

each group. According to the authors of MELODIC, unequal group size can result in the group-ICA 

components being more heavily influenced by the larger group, which can result in lower sensitivity 

to detect differences in brain regions that differ between the groups (Bijsterbosch et al., 2017, p. 67). 

Furthermore, “… it is generally preferable to avoid having unequal group sizes to start with” 

(Bijsterbosch et al., 2017, p. 67). As an additional benefit of dropping healthy control subjects to 

achieve an equal number of subjects in both groups (25 subjects per group), this enabled us to match 

the two groups more closely for age and sex. It should be noted that all balancing of the subject groups 

and dropping of subjects had been done prior to any fMRI analysis, and that no OUD subjects had been 

dropped from this study to balance the number of subjects, age, or sex between groups. 25 OUD 

subjects (15 males and 10 females; proportion of males to females = 0.60) and 25 HC subjects (13 

males and 12 females; proportion of males to females = 0.52) were included in the final analyses. 

1.2 Behavioral Measures 

NU scores were extracted from a short form of the UPPS-P scale (Lynam, 2013). The range of possible 

scores on the NU scale is 4 to 16. Scores for each of the UPPS-P components were also recorded. 

Opioid use was assessed by UDS (between 2 and 7 UDS collections for each subject; collected within 

15 months before the MRI scan date). Tobacco use was assessed by the Fagerström Test of Nicotine 
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Dependence (Heatherton et al., 1991). All behavioral and demographic data were analyzed using JMP 

(JMP, Version 14. SAS Institute Inc., Cary, NC, 1989-2019). 

A two-sample T-test was performed to test for statistical significance between groups with respect to 

age, NU, and all other sub-scores and the total score from the UPPS-P. An unequal variance two-

sample T-test was performed for mean relative framewise displacement (mFD; a measure of head 

motion) because a Brown-Forsythe test determined the variances between groups were significantly 

different (p<0.02). The median and interquartile range are reported for time since last opioid use 

because time since last opioid use was not normally distributed. A Chi-Square test indicated the number 

of males and females did not significantly differ between the two groups (𝑋2=0.33, df=1, p=0.5). 

1.3 MRI Acquisition 

MRI scans were acquired using the Philips Medical Systems (Best, Netherlands) Ingenia wide-bore 

dStream 3T MRI scanner, with a 32-channel receive head coil. Single shot gradient-echo echoplanar 

imaging (EPI) was used for acquiring fMRI data. The fMRI acquisition parameters were: parallel 

imaging SENSE in-plane acceleration factor 1.5, multiband factor 3, repetition time 1625 ms, echo 

time 30 ms, flip angle 52°, field of view 240 mm (anterior-to-posterior) × 240 mm (left-to-right) × 

125.70 mm (foot-to-head), in-plane resolution 2.5 mm × 2.5 mm, 45 axial slices, slice thickness 2.5 

mm, interslice gap 0.30 mm, 420 repetitions per run after 12 dummy acquisitions, and total duration 

was 11 minutes 22 seconds. Subjects completed the resting state fMRI scan with a black fixation cross 

on a white screen and with eyes open. Prior to the fMRI scan, two spin-echo echoplanar scans, using 

the same echo spacing and geometry as the main run, were acquired with opposite phase-encode 

directions to calculate distortion-correction. A T1-weighted 3-Dimensional Magnetization Prepared 

Rapid Gradient Echo (3D-MPRAGE) scan with acquisition voxel size = [1 x 1 x 1] mm and 160 axial 
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slices was acquired for offline co-registration with the fMRI scans, and a T2-weighted Fluid-

Attenuated Inversion Recovery (FLAIR) scans was read by a neuroradiologist to screen for incidental 

pathology. Peripheral pulse rate (using an MRI compatible finger-clip pulse oximeter) was 

electronically recorded continuously during the fMRI scans for offline removal of artifactual 

physiological signals. Task-based fMRI scans were also acquired, for analysis for a different study 

than the present experiment but were acquired after the resting state fMRI scan. In some instances 

where the resting state scan had to be repeated, the repeat scan was acquired after the task-based scan. 

1.4 MRI Preprocessing 

Initial removal of signal outliers during each fMRI raw time series (run) was performed using AFNI’s 

3dDespike function (Cox 1996, Version 20.1.02). Within each voxel, a timepoint with fMRI signal 

greater or equal to 6 standard deviations from the mean of the run within that voxel was substituted 

with the average of the signal of the two nearest neighboring time points. Physiologic noise correction 

with heart rate as an input was implemented via AFNI’s 3dretroicor (Cox 1996, Version 20.1.02; 

Glover et al., 2000), with adjustment for slice time acquisition differences. The PhysIO Toolbox 

(Kasper et al., 2017), implemented in SPM, was used to noise-correct the peripheral pulse waveforms 

and extract the timing of the peak pulse amplitudes before entering into AFNI’s 3dretroicor. Slice 

timing correction of the fMRI signal was performed via SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). 

From the preliminary spin-echo scan pair with opposite phase-encode directions, susceptibility-

induced off-resonance field correction was conducted using the method implemented in FSL "topup" 

software (www.fmrib.ox.ac.uk/fsl/). 

Quality control for head motion was assessed via the FSL FEAT pre-stats module 

(www.fmrib.ox.ac.uk/fsl/), using stringent criteria based on Parkes et al. (2018), in which fMRI runs 
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were eliminated from further analysis if any of the following criteria were met: (1) if the mean relative 

framewise displacement (mFD) was greater than 0.20 mm; or (2) if the number of timepoints with 

suprathreshold framewise displacements (FDs) (defined as FD greater than 0.25 mm) was greater than 

20% of the total number of volumes in the run; or (3) if any individual FD was greater than 5 mm; or 

(4) if the run contained less than 4 continuous minutes without any suprathreshold FDs. FD (sometimes 

called FDJenk) was calculated by the FSL MCFLIRT motion-correction program, as implemented in 

the FEAT pre-stats module, using the root mean squared volume-to-volume displacement of all brain 

voxels measured from the six head motion parameters (Jenkinson et al., 2002; Parkes et al., 2018). 

Relative FD was calculated relative to the FD of the preceding timepoint. Mean relative FD (i.e., mFD) 

is the average of relative FD values across the entire resting state scan for a participant. The FSL 

“FEAT” pre-stats module was conducted using rigid-body realignment of the fMRI timeseries, 

calculation of parameters for registration to the MPRAGE and subsequent parameters for linear and 

non-linear transformation to MNI standard space, spatial smoothing with a Gaussian kernel of 5 mm 

FWHM, and no highpass or lowpass filtering yet at this step.  

The contents of the output folder from the previous FEAT pre-stats step served as the input to ICA-

AROMA (Pruim et al., 2015a; Pruim et al., 2015b) for removal of head-motion related signal by using 

nonaggressive denoising applied to the spatially smoothed fMRI images on which ICA-AROMA used 

the spatial realignment and registration parameters from the previous FEAT step. 

Removal of other artifactual signal from the ICA-AROMA-denoised fMRI timeseries using the 

aCompCor procedure as implemented in CONN software in Matlab (Behzadi et al., 2007; 

www.nitrc.org/projects/conn, RRID:SCR_009550; MATLAB 2019), generating 5 principal 

components from an unsmoothed white matter region of interest created within CONN with erosion 

settings: Binarization threshold = 0.99, absolute value; Exclusion mask = 0.005; Erosion level = 5; 
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Number of erosions = 2; Erosion neighborhood = 0. Also using CONN, 5 principal components were 

extracted from an unsmoothed twice eroded cerebrospinal fluid region of interest generated from FSL 

FAST tissue segmentation with 0.99 probability CSF and using the FSL 

MNI152_T1_2mm_VentricleMask. Subsequent multiple regression general linear model was used to 

remove these white matter and CSF components from the fMRI timeseries.  

The FSL applywarp command was used to transform the ICA-AROMA-and-aCompCor-denoised 

fMRI timeseries into MNI space, based on the linear transformation and nonlinear warp parameters 

generated from the FEAT pre-stats step. High pass filtering was performed with a cutoff of 0.008 Hz 

(125 s). Low pass filtering was not performed as studies have suggested that relevant functional 

connectivity signal may be lost by doing so (Boubela et al., 2013; Chen & Glover, 2015). 

1.5 Functional Connectivity Analysis 

Group independent component analysis (group-ICA) maps were created via FSL MELODIC 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC; Beckmann & Smith, 2004), in which the 

preprocessed fMRI scans from all 25 OUD subjects and all 25 HC subjects were temporally 

concatenated as input. The output maps of FSL MELODIC group-ICA were visually inspected with a 

threshold of Z≥4 (which was calculated by dividing the original component connectivity strength at 

each voxel by the standard deviation of the residual noise) to determine which components most closely 

mapped the DMN, SN, left ECN (LECN), and right ECN (RECN), compared to visual inspection of 

maps of those networks generated from previous studies (Menon, 2011; Shirer et al., 2012; Sridharan 

et al., 2008). Group-ICA outputs with components of 15, 20, 25, and 30 were selected for comparison 

based on the number of components chosen in previous studies (Kuo et al., 2019; Li et al., 2015; Li et 

al., 2018). The number of components was set at 30 because it gave the best visual representation of 

the DMN, SN, LECN, and RECN from the current dataset.  
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Dual regression analysis was then performed in FSL (Nickerson et al., 2017; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression) to obtain subject-specific component maps. The 

FSL technique of Group Independent Component Analysis (GICA) (Bijsterbosch et al., 2017, p. 59) 

derives network maps that are common to all the subjects (i.e., fMRI data from all subjects in both 

groups combined are included in the GICA). After the GICA procedure is complete, stage 1 of the FSL 

dual regression (Nickerson et al., 2017) uses the GICA generated network maps to estimate a subject-

specific time-course (timeseries) for each network. Each subject-specific time-course essentially 

reflects the average time-course across voxels in the corresponding network map (after taking into 

account the contributions of the other networks) (Nickerson et al., 2017). Those subject-specific time-

courses were then normalized by their amplitude (represented by the standard deviation of the time-

course) to allow for measurement of network-wide and localized signal amplitude differences, in 

addition to differences in the spatial distribution of connectivity strength across subjects (Nickerson et 

al., 2017). In stage 2 of dual regression, the subject-specific time-course for each network is then used 

as a template to generate a subject-specific spatial map for that network. Specifically, in stage 2 of dual 

regression, a linear regression analysis is conducted within each voxel, where the dependent variable 

is the individual subject’s observed fMRI time-course within that voxel, and the regressor is the 

subject-specific time-course which is characteristic of the entire network. This regression analysis 

estimates a regression coefficient, which essentially scales the fit of the observed voxel time-course to 

the network template time-course (Nickerson et al., 2017). The parameter estimate (beta value) of the 

regression coefficient at each voxel constitutes the subject-specific spatial map of relative functional 

connectivity (Bijsterbosch et al., 2017, pp. 63-64) across the network. Because of the variance 

normalization procedure used in the dual regression analysis, the map of regression coefficients 

obtained from stage 2 represents the relative functional connectivity across the voxels in the network, 

and also the relative magnitude of the BOLD signal at each voxel (Nickerson et al., 2017). The 
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amplitude of the resting fMRI signal is believed to reflect an important aspect of functional 

connectivity (reviewed in Nickerson et al., 2017). 

Non-parametric permutation tests were then performed via the Permutation Analysis of Linear Models 

(PALM) program (Winkler et al., 2014; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM) using the subject-

specific spatial maps of parameter estimates output of stage 2 of the dual regression to compare the 

within-network functional connectivities (i.e., spatial maps of parameter estimates) of the DMN, SN, 

LECN, and RECN between groups. The FSL standard Threshold Free Cluster Enhancement (TFCE) 

was used to identify statistically significant clusters of voxels while maintaining family-wise-error 

(FWE) control (Smith & Nichols, 2009). PALM computed FWE correction for the number of voxels 

and for the number of networks, 4, that were input, and also for the number of contrasts, 2, within each 

model. The FWE correction of the 2 contrasts within each model accounted for two-tailed significance 

(OUD>HC and HC>OUD for group functional connectivity differences and positive and negative 

regression slopes for the regression of functional connectivity on NU) (Alberton, et al. 2020). FWE 

correction was used because there may be issues with using FDR correction in functional network 

analysis, in terms of possibly not preserving the spatial relationship among voxels within a given 

network (Winkler et al., 2016). According to the authors of the PALM program (Winkler et al., 2016), 

FDR multiple comparisons correction may not guarantee that the spatial relationship among voxels 

within a given test is preserved when applied across multiple tests. Issues may arise when correcting 

across multiple ICA-identified networks (which we performed in our study) while maintaining FDR 

control across voxels within a given network. These issues are mitigated when using full FWE 

correction as implemented in the PALM software (Winkler et al., 2016). FWE correction for multiple 

comparisons also has the advantage of being more stringent than FDR correction (Bijsterbosch et al., 

2017, p. 75). 
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In addition to the whole-network ICA analysis, this study also assessed a priori specific ROIs within 

the SN (left anterior insula, right anterior insula, and dorsal anterior cingulate cortex (dACC)), and a 

priori specific ROIs within the DMN (posterior cingulate cortex (PCC) and medial prefrontal cortex 

(mPFC)), as these regions have been proposed to be key nodes within those networks (Menon, 2011; 

Zhang & Volkow, 2019). The anterior insula and dACC are in the SN and have both been associated 

with facilitating switching between the DMN and ECN based on the internal or external nature of the 

stimuli, respectively (Kerns et al., 2004; Sridharan et al., 2008; Menon & Uddin, 2010). The mPFC 

and PCC are in the DMN and have been associated with processing and attributing meaning to 

personally relevant stimuli (Andrews-Hanna et al., 2014). We hypothesized that the functional 

connectivity of the left anterior insula, right anterior insula, and dACC regions of interest within the 

SN and the PCC and mPFC regions of interest within the DMN, would be weaker in OUD compared 

to HC.  We compared the mean connectivity strength parameter estimates between groups within each 

of the a priori ROIs (left insula, right insula, and dACC in the SN; dmPFC and PCC in the DMN). 

Region of interest (ROI) boundaries (for the PCC and mPFC of the DMN and the left anterior insula, 

right anterior insula, and dACC of the SN) for another set of exploratory analyses were set by creating 

a mask for each region based on functional network templates obtained from the Stanford FIND lab 

website (http://findlab.stanford.edu/functional_ROIs.html), that were reported in Shirer et al. (2012). 

Mean connectivity strength parameter estimate values (output from stage 2 of dual regression) were 

calculated for each ROI within their respective networks and were used as the input for a nonparametric 

analysis (following group-mean centering) performed using PALM comparing the two groups. PALM 

outputs were FWE corrected for multiple comparisons for the 5 ROI inputs as well as the 2 contrasts 

for each ROI (OUD>HC and HC>OUD). 
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To test for associations between hypothesized functional connectivities and behavioral data, PALM 

was used to perform a voxel-wise regression analysis of the subject-specific SN functional connectivity 

on the mean-centered NU scores for both subject groups testing for both main and group interaction 

effects of NU. We first tested for group x NU interaction effects, and then assessed the main effects of 

NU if there were no statistically significant group x NU interaction effects (FWE-corrected for voxels 

p<0.05) per the recommendation of the authors of the FSL neuroimaging analysis software that we 

used (General Linear Model for neuroimaging guide https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM) as 

well as Kutner et al. (2005; pp. 306-308, 312-313, 326-327, 921-925, 932-933). For exploratory 

analyses, using the same procedure, the regressions of the within-network functional connectivities of 

the DMN, LECN, and RECN on mean-centered NU scores were computed. For the analysis of the 

effects of mFD on functional connectivity and post-hoc analysis of time since last opioid use, the same 

procedure was followed. Once significant group interaction effects were ruled out, the regressions of 

the within-network functional connectivity of the DMN, SN, LECN, and RECN on mean-centered 

mFD and hours since last opioid use were computed. 

The anatomical location of the only significant cluster reported in section 3.2 of the manuscript was 

determined by visually inspecting the location of the cluster overlaid on the Harvard-Oxford Cortical 

Structural Atlas in FSLeyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and converting the MNI 

coordinates of the anterior-posterior and dorsal-ventral borders of the cluster into Talairach coordinates 

using a publicly available widget (https://bioimagesuiteweb.github.io/webapp/mni2tal.html; Yale 

BioImage Suite Package - MNI to Talairach Mapping; Lacadie et al., 2008). Then, we compared those 

Talairach coordinates to the dorsolateral prefrontal cortex Talairach coordinates given in the 

histological study by Rajkowska & Goldman-Rakic (1995). 
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In order to examine heterogeneity of our OUD sample, we also performed two post-hoc analyses. In 

the first analysis, we compared OUD subjects with at least one UDS positive for buprenorphine or 

methadone to OUD subjects with UDS positive for only illicit opioids. In the second analysis, we 

regressed the subject-specific component maps onto mean-centered self-reported time since last opioid 

use, measured in hours. 

We had planned to perform an ANCOVA with NU as a covariate if the main effect of NU in the 

preregistered regression analysis of functional connectivity on NU was statistically significant, but the 

regression results were not statistically significant. Based on recommendations from a standard 

statistics textbook (Kutner et al., 2005, pp 347, 919, 940), for a concomitant variable to be included as 

a covariate in ANCOVA, there should be a statistically significant regression relationship of the 

concomitant variable with the response variable. If potential covariates have no relation to the response 

variable, then nothing is to be gained by including them in ANCOVA (Kutner et al., 2005, p. 919), and 

in our case, the reduction in the degrees of freedom from adding such covariates to the model may be 

detrimental, given the relatively small sample size in our study. Furthermore, a worsening of the 

model’s performance can occur when variables are kept in the model that are not related to the response 

variable, or if there is no regression relationship to allow for extrapolation of the regression line of the 

covariate between the means of the two groups (Kutner et al., 2005, pp. 347, 940). None of the NU 

regression results for any of the networks were statistically significant. We also performed a regression 

analysis of functional connectivity on head motion (mFD) and education for all four networks 

examined to determine whether to include head motion or education as a covariate in ANCOVA. None 

of the head motion or education regression results for any of the networks were statistically significant 

and therefore mFD and education were not included as covariates in ANCOVA. Given that tobacco 
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use was imbalanced between groups, we compared the functional connectivity of tobacco using OUD 

to non-tobacco using OUD to investigate the effects of tobacco use on functional connectivity. 

1.6 ROI Group Differences 

OUD and HC did not significantly differ in mean connectivity strength for any of the 5 ROIs (p greater 

than 0.333). 
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